Сфинголипиды (сфингофосфолипиды). Сфингомиелины Какое утверждение для сфингомиелина является неверным

СФИНГОМИЕЛИНЫ - сложные липиды, в состав к-рых входит аминоспирт сфингозин или его полиненасыщенные аналоги, холин, остаток фосфорной кислоты и остаток жирной кислоты. Генетически обусловленное нарушение обмена С. лежит в основе тяжелой энзимопатии (см.).

С. были открыты в 1884 г. Туди-хумом (L. J. W. Thudichum) и выделены им же в 1901 г. Они широко распространены в природе, входят в состав мембран животных и растительных клеток. Особенно богата С. нервная ткань. Ок. 20% всех фосфолипидов мозга (см. Фосфатиды) приходится на долю С. В миелине, белом и сером веществе мозга человека С. составляют 7-8% от общего количества липидов (см.). В фосфолипидах мембран эритроцитов обнаружено 15-16% С., причем 80-85% этих С. находятся в наружном слое мембран. В плазме крови человека концентрация С. равна 10-50 мг/100 мл (по другим данным, 10-30 мг/100 мл), что составляет в среднем 18-20% от общего количества фосфолипидов плазмы крови. С. входят в состав липопротеидов (см.) плазмы крови.

Н. В. Гуляева.

Химия липидов

Липиды представляют собой обширную группу соединений, существенно различающихся по своей химической структуре и функциям. Поэтому трудно дать единое определение, которое подошло бы для всех соединений, относящихся к этому классу.

Можно сказать, что липиды представляют собой группу веществ, которые характеризуются следующими признаками: нерастворимостью в воде; растворимостью в неполярных растворителях, таких, как эфир, хлороформ или бензол; содержанием высших алкильных радикалов; распространенностью в живых организмах.

Под это определение попадает большое количество веществ, в том числе такие, которые обычно причисляют к другим классам соединений: например, жирорастворимые витамины и их производные, каротиноиды, высшие углеводороды и спирты. Включение всех этих веществ в число липидов в известной степени оправдано, потому что в живых организмах они находятся вместе с липидами и вместе с ними экстрагируются неполярными растворителями. С другой стороны, имеются представители липидов, которые довольно хорошо растворяются в воде (например, лизолецитины). Термин «липиды» является более общим, чем термин «липоиды», который объединяет группу жироподобных веществ, таких, как фосфолипиды, стерины, сфинголипиды и др.

Биологическая роль и классификация липидов

Липиды играют важнейшую роль в процессах жизнедеятельности. Будучи одним из основных компонентов биологических мембран, липиды влияют на их проницаемость, участвуют в передаче нервного импульса, создании межклеточных контактов. Жир служит в организме весьма эффективным источником энергии либо при непосредственном использовании, либо потенциально – в форме запасов жировой ткани. В натуральных пищевых жирах содержатся жирорастворимые витамины и «незаменимые» жирные кислоты. Важная функция липидов – создание термоизоляционных покровов у животных и растений, защита органов и тканей от механических воздействий

Существует несколько классификаций липидов. Наибольшее распространение получила классификация, основанная на структурных особенностях липидов. По этой классификации различают следующие основные классы липидов.

A. Простые липиды: сложные эфиры жирных кислот с различными спиртами.

1. Глицериды (ацилглицерины, или ацилглицеролы – по международной номенклатуре) представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот.

2. Воска: сложные эфиры высших жирных кислот и одноатомных или двухатомных спиртов.

Б. Сложные липиды: сложные эфиры жирных кислот со спиртами, дополнительно содержащие и другие группы.

1. Фосфолипиды: липиды, содержащие, помимо жирных кислот и спирта, остаток фосфорной кислоты. В их состав часто входят азотистые основания и другие компоненты:

а) глицерофосфолипиды (в роли спирта выступает глицерол);

б) сфинголипиды (в роли спирта – сфингозин).

2. Гликолипиды (гликосфинголипиды).

3. Стероиды.

4. Другие сложные липиды: сульфолипиды, аминолипиды. К этому классу можно отнести и липопротеины.

5. Предшественники и производные липидов: жирные кислоты, глицерол, стеролы и прочие спирты (помимо глицерола и стеролов), альдегиды жирных кислот, углеводороды, жирорастворимые витамины и гормоны.

Жирные кислоты

Жирные кислоты – алифатические карбоновые кислоты – в организме могут находиться в свободном состоянии (следовые количества в клетках и тканях) либо выполнять роль строительных блоков для большинства классов липидов.

В природе обнаружено свыше 200 жирных кислот, однако, в тканях человека и животных в составе простых и сложных липидов найдено около 70 жирных кислот, причем более половины из них в следовых количествах. Практически значительное распространение имеют немногим более 20 жирных кислот. Все они содержат четное число углеродных атомов, главным образом от 12 до 24. Среди них преобладают кислоты, имеющие С 16 и С 18 (пальмитиновая, стеариновая, олеиновая и линолевая). Нумерацию углеродных атомов в жирно-кислотной цепи начинают с атома углерода карбоксильной группы. Примерно 3 / 4 всех жирных кислот являются непредельными (ненасыщенными), т.е. содержат двойные связи. Ненасыщенные жирные кислоты человека и животных, участвующие в построении липидов, обычно содержат двойную связь между (9-м и 10-м атомами углеводородов); дополнительные двойные связи чаще бывают на участке между 11-м атомом углерода и метильным концом цепи. Своеобразие двойных связей природных ненасыщенных жирных кислот заключается в том, что они всегда отделены двумя простыми связями, т.е. между ними всегда имеется хотя бы одна метиленовая группа (-СН=СН-СН 2 -СН=СН-). Подобные двойные связи обозначают как «изолированные».

Таблица 1 - Некоторые физиологически важные насыщенные жирные кислоты

Число атомов С Тривиальное название Систематическое название
6 Капроновая Гексановая СН 3 −(СН 2) 4 −СООН
8 Каприловая Октановая СН 3 −(СН 2) 6 −СООН
10 Каприновая Декановая СН 3 −(СН 2) 8 −СООН
12 Лауриновая Додекановая СН 3 −(СН 2) 10 СООН
14 Миристиновая Тетрадекановая СН 3 −(СН 2) 12 −СООН
16 Пальмитиновая Гексадеконовая СН 3 −(СН 2) 14 −СООН
18 Стеариновая Октадекановая СН 3 −(СН 2) 16 −СООН
20 Арахиновая Эйкозановая СН 3 −(СН 2) 18 −СООН
22 Бегеновая Докозановая СН 3 −(СН 2) 20 −СООН
24 Лигноцириновапя Тетракозановая СН 3 −(СН 2) 22 −СООН

В растворах жирно-кислотная цепь может образовывать бесчисленное количество конформаций вплоть до клубка, в котором имеются и линейные участки различной длины в зависимости от числа двойных связей. Клубки могут слипаться между собой, образуя так называемые мицеллы. В последних отрицательно заряженные карбоксильные группы жирных кислот обращены к водной фазе, а неполярные углеводородные цепи спрятаны внутри мицеллярной структуры. Такие мицеллы имеют суммарный отрицательный заряд и в растворе остаются суспендированными благодаря взаимному отталкиванию.

Известно также, что при наличии двойной связи в жирнокислотной цепи вращение углеродных атомов относительно друг друга ограничено. Это обеспечивает существование ненасыщенных жирных кислот в виде геометрических изомеров, причем природные ненасыщенные жирные кислоты имеют цис- конфигурацию и крайне редко транс -конфигурации.
Таблица 11 - Некоторые физиологически важные ненасыщенные жирные кислоты

Число атомов С Тривиальное название Систематическое название Химическая формула соединения
Моноеновые кислоты
16 Пальмитиновая 9-гексадеценовая СН 3 −(СН 2) 5 −СН=СН−(СН 2) 5 СООН
18 Олеиновая 9-октаддеценовая СН 3 −(СН 2) 7 −СН=СН−(СН 2) 7 СООН
Диеновые кислоты
18 Линолевая 9,12-октадеценовая СН 3 −(СН 2) 4 −СН=СН−СН 2 − −СН=СН− (СН 2) 7 СООН
Триеновая кислоты
18 Линоленовая 9,12,15-октадекатриеновая СН 3 −СН 2 −СН=СН−СН 2 − −СН=СН− СН 2 − СН=СН (СН 2) 7 −СООН
Тетраеновые кислоты
20 Арахидоновая 5,8,11,14-эйкозатетраеновая СН 3 −СН 2 −СН=СН−СН 2 − СН=СН−СН 2 − СН=СН−СН 2 − СН=СН−СН 2 − СН= − (СН 2) 5 −СООН

Считают, что жирной кислоте с несколькими двойными связями цис- конфигурация придает углеводородной цепи изогнутый и укороченный вид. По этой причине молекулы этих кислот занимают больший объем, а при образовании кристаллов упаковываются не так плотно, как транс- изомеры. Вследствие этого цис- изомеры имеют более низкую температуру плавления (олеиновая кислота, например, при комнатной температуре находится в жидком состоянии, тогда как элаидиновая – в кристаллическом). Цис- конфигурация делает ненасыщенную кислоту менее стабильной и более подверженной катаболизму.

Рисунок 23 - Конфигурация 18-углеродных насыщенных (а) и мононенасыщенных (б) жирных кислот

Биологические функции ПНЖК:

1. структурная. ПНЖК входят в состав нервных волокон, клеточных мембран, соединительной ткани.

2. защитная (повышает устойчивость организма к инфекциям, радиации).

3. повышают эластичность кровеносных сосудов, способствуют выведению избытка холестерина.

4. арахидоновая кислота является предшественником гормонов простагландинов.

Глицериды (ацилглицеролы)

Глицериды (ацилглицерины, или ацилглицеролы) представляют собой сложные эфиры трехатомного спирта глицерина и высших жирных кислот. Если жирными кислотами этерифицированы все три гидроксильные группы глицерина (ацильные радикалы R 1 , R 2 и R 3 могут быть одинаковы или различны), то такое соединение называют триглицеридом (триацилглице-рол), если две – диглицеридом (диацилглицерол) и, наконец, если этери-фицирована одна группа – моноглицеридом (моноацилглицерол):

Наиболее распространенными являются триглицериды, часто называемые нейтральными жирами или просто жирами. Нейтральные жиры находятся в организме либо в форме протоплазматического жира, являющегося структурным компонентом клеток, либо в форме запасного, резервного, жира. Роль этих двух форм жира в организме неодинакова. Протоплазматический жир имеет постоянный химический состав и содержится в тканях в определенном количестве, не изменяющемся даже при патологическом ожирении, в то время как количество резервного жира подвергается большим колебаниям.

Как отмечалось, основную массу природных нейтральных жиров составляют триглицериды. Жирные кислоты в триглицеридах могут быть насыщенными и ненасыщенными. Из жирных кислот чаще встречаются пальмитиновая, стеариновая и олеиновые кислоты. Если все три кислотных радикала принадлежат одной и той же жирной кислоте, то такие триглицериды называют простыми (например, трипальмитин, тристеарин, триолеин и т.д.), если разным жирным кислотам, то смешанными. Названия смешанных триглицеридов образуются в зависимости от входящих в их состав жирных кислот, при этом цифры 1, 2 и 3 указывают на связь остатка жирной кислоты с соответствующей спиртовой группой в молекуле глицерина (например, 1-олео-2-пальмитостеарин). Необходимо отметить, что положение крайних атомов в молекуле глицерина на первый взгляд равнозначно, тем не менее, их обозначают сверху вниз – 1 и 3. Это объясняется, прежде всего, тем, что в структуре триглицерида при пространственном ее рассмотрении крайние «глицериновые» атомы углерода становятся уже не равнозначными, если гидроксилы 1 и 3 ацилированы разными жирными кислотами.

Жирные кислоты, входящие в состав триглицеридов, практически определяют их физико-химические свойства. Так, температура плавления триглицеридов повышается с увеличением числа и длины остатков насыщенных жирных кислот. Напротив, чем выше содержание ненасыщенных жирных кислот, или кислот с короткой цепью, тем ниже точка плавления.

Животные жиры (сало) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.), благодаря чему, при комнатной температуре они твердые. Жиры, в состав которых входит много ненасыщенных кислот, при обычной температуре жидкие и называются маслами. Так, в конопляном масле 95% всех жирных кислот приходится на долю олеиновой, линолевой и линоленовой кислот и только 5% – на долю стеариновой и пальмитиновой кислот. В жире человека, плавящемся при температуре 15°С (при температуре тела он жидкий), содержится 70% олеиновой кислоты.

Глицериды способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, в результате которой из триглицеридов образуются глицерол и жирные кислоты. Омыление жира может происходить как при ферментативном гидролизе, так и при действии кислот или щелочей.

Фосфолипиды

Фосфолипиды представляют собой сложные эфиры многоатомных спиртов глицерина или сфингозина с высшими жирными кислотами и фосфорной кислотой. В состав фосфолипидов входят также азотсодержащие соединения: холин, этаноламин или серин. В зависимости от того, какой многоатомный спирт участвует в образовании фосфолипида (глицерин или сфингозин), последние делят на 2 группы: глицерофосфолипиды и сфинго-фосфолипиды. Необходимо отметить, что в глицерофосфолипидах либо холин, либо этаноламин или серин соединены эфирной связью с остатком фосфорной кислоты; в составе сфинголипидов обнаружен только холин. Наиболее распространенными в тканях животных являются глицерофосфолипиды.

Глицерофосфолипиды. Глицерофосфолипиды являются производными фосфатидной кислоты. В их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения. Общая формула глицерофосфолипидов выглядит так:


В этих формулах R 1 и R 2 – радикалы высших жирных кислот, a R 3 – чаще радикал азотистого соединения. Для всех глицерофосфолипидов характерно, что одна часть их молекул (радикалы R 1 и R 2) обнаруживает резко выраженную гидрофобность, тогда как другая часть гидрофильна благодаря отрицательному заряду фосфорной кислоты и положительному заряду радикала R 3 .

Из всех липидов глицерофосфолипиды обладают наиболее выраженными полярными свойствами. При помещении глицерофосфолипидов в воду в истинный раствор переходит лишь небольшая их часть, основная же масса липидов находится в виде мицелл. Существует несколько групп (подклассов) глицерофосфолипидов. В зависимости от характера азотистого основания, присоединенного к фосфорной кислоте, Глицерофосфо-липиды подразделяют на фосфатидилхолины (лецитины), фосфатидилэта-ноламины (кефалины) и фосфатидилсерины. В состав некоторых глицеро-фосфолипидов вместо азотсодержащих соединений входит не содержащий азота шестиуглеродный циклический спирт инозит, называемый также инозитолом. Эти липиды называются фосфатидилинозитолами.

Фосфатидилхолины (лецитины). В отличие от триглицеридов в молекуле фосфатидилхолина одна из трех гидроксильных групп глицерина связана не с жирной, а с фосфорной кислотой. Кроме того, фосфорная кислота в свою очередь соединена эфирной связью с азотистым основанием – холином [НО-СН 2 -СН 2 -N + (CH 3) 3 ]. Таким образом, в молекуле фосфатидилхолина соединены глицерин, высшие жирные кислоты, фосфорная кислота и холин:

Фосфатидилэтаноламины. Основное различие между фосфатидилхолинами и фосфатидилэтаноламинами – наличие в составе последних азотистого основания этаноламина (HO-CH 2 -CH 2 -N + H 3):

Из глицерофосфолипидов в организме животных и высших растений в наибольшем количестве встречаются фосфатидилхолины и фосфатидилэтаноламины. Эти 2 группы глицерофосфолипидов метаболически связаны друг с другом и являются главными липидными компонентами мембран клеток.

Фосфатидилсерины. В молекуле фосфатидилсерина азотистым соединением служит остаток аминокислоты серина


Фосфатидилсерины распространены гораздо менее широко, чем фосфатидилхолины и фосфоэтаноламины, и их значение определяется в основном тем, что они участвуют в синтезе фосфатидилэтаноламинов.

Фосфатидилинозитолы. Эти липиды относятся к группе производных фосфатидной кислоты, но не содержат азота. Радикалом (R 3) в этом подклассе глицерофосфолипидов является шестиуглеродный циклический спирт инозитол:

Фосфатидилинозитолы довольно широко распространены в природе. Они обнаружены у животных, растений и микроорганизмов. В животном организме найдены в мозге, печени и легких.

Плазмалогены. От рассмотренных глицеролипидов плазмалогены отличаются тем, что вместо одного остатка высшей жирной кислоты содержат остаток α,β-ненасыщенного спирта, который образует простую связь (в отличие от сложноэфирной связи, образуемой остатком жирной кислоты) с гидроксильной группой глицерина в положении С-1:

Фосфатидальхолин (плазмалоген)
Основными подклассами плазмалогенов являются фосфатидальхолины, фосфатидальэтаноламины и фосфатидальсерины. При кислотном гидролизе плазмалогенов образуются «жирные» альдегиды, называемые плазмалями, что и легло в основу термина «плазмалоген».

Кардиолипин. Своеобразным представителем глицерофосфолипидов является кардиолипин, впервые выделенный из сердечной мышцы. По своей химической структуре кардиолипин можно рассматривать как соединение, в котором 2 молекулы фосфатидной кислоты связаны с помощью одной молекулы глицерина. В отличие от остальных глицерофосфолипидов кар-диолипин является как бы «двойным» глицерофосфолипидом. Кардиолипин локализован во внутренней мембране митохондрий. Функция его пока неясна, хотя известно, что в отличие от других фосфолипидов кардиолипин обладает иммунными свойствами.

Кардиолипин
В этой формуле R 1 , R 2 , R 3 , R 4 – радикалы высших жирных кислот.

Необходимо отметить, что в природе встречается свободная фосфатид-ная кислота, но в относительно небольших количествах по сравнению с глицерофосфолипидами. Среди жирных кислот, входящих в состав гли-церофосфолипидов, обнаружены как насыщенные, так и ненасыщенные (чаще стеариновая, пальмитиновая, олеиновая и линолевая).

Установлено также, что большинство фосфатидилхолинов и фосфати-дилэтаноламинов содержат одну насыщенную высшую жирную кислоту в положении С-1 и одну ненасыщенную высшую жирную кислоту в положении С-2. Гидролиз фосфатидилхолинов и фосфатидилэтаноламинов при участии особых ферментов (эти ферменты относятся к фосфолипазам А 2), содержащихся, например, в яде кобры, приводит к отщеплению ненасыщенной жирной кислоты и образованию лизофосфолипидов – лизофосфатидилхолинов, или лизофосфатидилэтаноламинов, оказывающих сильное гемолитическое действие:

Сфинголипиды (сфингофосфолипиды)

Сфингомиелины. Это наиболее распространенные сфинголипиды. В основном они находятся в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Сфингомиелины обнаружены также в ткани почек, печени и других органов. При гидролизе сфингомиелины образуют одну молекулу жирной кислоты, одну молекулу двухатомного ненасыщенного спирта сфингозина, одну молекулу азотистого основания (чаще это холин) и одну молекулу фосфорной кислоты. Общую формулу сфингомиелинов можно представить так:

Общий план построения молекулы сфингомиелина в определенном отношении напоминает строение глицерофосфолипидов. Молекула сфин-гомиелина содержит как бы полярную «головку», которая несет одновременно и положительный (остаток холина), и отрицательный (остаток фосфорной кислоты) заряды, и два неполярных «хвоста» (длинная алифатическая цепь сфингозина и ацильный радикал жирной кислоты). В некоторых сфингомиелинах, например выделенных из мозга и селезенки, вместо сфингозина найден спирт дигидросфингозин (восстановленный сфингозин):

Стероиды

Все рассмотренные липиды принято называть омыляемыми, поскольку при их щелочном гидролизе образуются мыла. Однако имеются липиды, которые не гидролизуются с освобождением жирных кислот. К таким липидам относятся стероиды. Стероиды – широко распространенные в природе соединения. Они часто обнаруживаются в ассоциации с жирами. Их можно отделить от жира путем омыления (они попадают в неомыляемую фракцию). Все стероиды в своей структуре имеют ядро, образованное гидрированным фенантреном (кольца А, В и С) и циклопентаном (кольцо D) (рис. 1):


Рисунок 1 - Обобщенное стероидное ядро
К стероидам относятся, например, гормоны коркового вещества надпочечников, желчные кислоты, витамины группы D, сердечные гликозиды и другие соединения. В организме человека важное место среди стероидов занимают стерины (стеролы), т.е. стероидные спирты. Главным представителем стеринов является холестерин (холестерол).

Ввиду сложного строения и асимметрии молекулы стероиды имеют много потенциальных стереоизомеров. Каждое из шестиуглеродных колец (кольца А, В и С) стероидного ядра может принимать две различные пространственные конформации – конформацию «кресла» либо «лодки».

В природных стероидах, в том числе и в холестерине, все кольца в форме «кресла», что является более устойчивой конформацией.

Холестерин . Как отмечалось, среди стероидов выделяется группа соединений, получивших название стеринов (стеролов). Для стеринов характерно наличие гидроксильной группы в положении 3, а также боковой цепи в положении 17. У важнейшего представителя стеринов – холестерина – все кольца находятся в транс- положении; кроме того, он имеет двойную связь между 5-м и 6-м углеродными атомами. Следовательно, холестерин является ненасыщенным спиртом:

Кольцевая структура холестерина отличается значительной жесткостью, тогда как боковая цепь – относительной подвижностью. Итак, холестерин содержит спиртовую гидроксильную группу при С-3 и разветвленную алифатическую цепь из 8 атомов углерода при С-17. Химическое название холестерина 3-гидрокси-5,6-холестен. Гидроксильная группа при С-3 может быть этерифицирована высшей жирной кислотой, при этом образуются эфиры холестерина (холестериды).

Каждая клетка в организме млекопитающих содержит холестерин. Находясь в составе мембран клеток, неэтерифицированный холестерин вместе с фосфолипидами и белками обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней ферментов. В цитоплазме холестерин находится преимущественно в виде эфиров с жирными кислотами, образующих мелкие капли – так называемые вакуоли. В плазме крови как неэтерифицированный, так и этерифицированный холестерин транспортируется в составе липопротеинов.

Холестерин – источник образования в организме млекопитающих желчных кислот, а также стероидных гормонов (половых и кортикоидных). Холестерин, а точнее продукт его окисления – 7-дегидрохолестерин, под действием УФ-лучей в коже превращается в витамин D 3 . Таким образом, физиологическая функция холестерина многообразна.

Холестерин находится в животных, но не в растительных жирах. В растениях и дрожжах содержатся близкие по структуре к холестерину соединения, в том числе эргостерин.

Эргостерин – предшественник витамина D. После воздействия на эргостерин УФ-лучами он приобретает свойство оказывать противорахитное действие (при раскрытии кольца В).

Восстановление двойной связи в молекуле холестерина приводит к образованию копростерина (копростанола). Копростерин находится в составе фекалий и образуется в результате восстановления бактериями кишечной микрофлоры двойной связи в холестерине между атомами С 5 и С 6 .

Указанные стерины в отличие от холестерина очень плохо всасываются в кишечнике и потому обнаруживаются в тканях человека в следовых количествах.

Воски

Воски – это сложные эфиры жирных кислот и высших одноатомных спиртов (С 12 – С 46). Воски входят в состав защитного покрытия листьев растений и кожи человека и животных. Они придают поверхности характерный блеск и водоотталкивающие свойства, что важно для сохранения воды внутри организма и создания барьера между организмом и окружающей средой.

По внешнему виду, физическим свойствам и источникам происхождения жиры и воска имеют много общего, однако воски очень устойчивы к воздействию химических реагентов и не изменяются при длительном хранении.

Существует простой способ, помогающий их различить. При сильном нагревании жир издает резкий неприятный запах акролеина, а воск при этом имеет приятный запах.

Воски бывают растительные, животные, ископаемые и синтетические.

Растительные воски

Карнаубский воск покрывает листья бразильской пальмы Copernicia cerifera. Представляет собой сложный эфир триаконтанола СН 3 (СН 2) 29 ОН и тетракозановой кислоты СН 3 (СН 2) 22 СООН. Для получения карнаубского воска листья пальмы высушивают, из них выколачивают порошок, который вываривают в воде и выливают в формы. 2000 листьев дают около 16 кг воска. Используют карнаубский воск для изготовления мастик, кремов для обуви.

Пальмовый воск находится в углублениях кольчатого ствола восковой пальмы, откуда его соскабливают. Одно дерево дает 12 кг воска.

Японский воск добывают из лакового дерева, произрастающего в Японии и Китае.

Растительными восками покрыты фрукты, овощи и ягоды (например, черника).

Животные воски

Пчелиный воск – наиболее известный из этого вида восков – представляет собой пальмитиномирициловый эфир.

Шерстяной (шерстный) воск – ланолин – обильно покрывает шерсть животных.

Спермацет содержится в костных черепных углублениях некоторых видов китов, особенно кашалотов. На 90 % состоит из пальмитиноцетилового эфира:

Китайский воск вырабатывается червецом, который обитает на китайском ясене и образует на нем восковой покров. Содержит сложный эфир гексакозановой кислоты СН 3 (СН 2) 24 СООН и гексадеканового спирта СН 3 (СН 2) 15 ОН.

К воскам относятся кожное сало и ушная сера.

Воск бактерий покрывает поверхность кислотоупорных бактерий, например, туберкулезных, обеспечивая их устойчивость к внешним воздействиям. Содержит сложные эфиры миколевой кислоты С 88 Н 172 О 2 и октадеканола С 20 Н 42 О.

Ископаемые воски

Торфяной воск получают экстракцией бензином при 80°С верхового битуминозного торфа.

Буроугольный воск (монтан-воск) извлекают бензином из бурого битуминозного угля.

Горный воск – озокерит – минерал из группы нефтяных битумов.

Синтетические воски получают на основе нефтяных и смоляных парафинов и их производных.

Воски применяют более чем в 200 отраслях народного хозяйства. Они входят в состав политур, защитных композиций для металлов, тканей, бумаги, кож, дерева; как изолирующий материал; компоненты мазей в косметике и медицине.


Похожая информация.


Основными подклассами плазмалогенов являются фосфатидальхолины, фосфатидальэтаноламины и фосфатидальсерины. В разбавленных кислотах они гидролизуются с образованием альдегида соответствующего α,β-ненасыщенного спирта, то есть при кислотном гидролизе плазмалогенов образуются «жирные» альдегиды, называемые плазмалями, что и легло в основу термина «плазмалоген». Плазмалогены также входят в состав мембран мышц, нервных клеток, эритроцитов.

Некоторые, открытые сравнительно недавно фосфатиды, не содержат азотис­того основания, место которого в молекуле в этом случае занимают глицерин и его производные:

Фосфатидилглицерин является обязательной составной частью хлоропластов и в небольших количествах присутствует в бактериальных клетках и тканях жи­вотных.

Кардиолипин - одно из необходимых соединений в соста­ве митохондриальных мембран, особенно в митохондриях сердечной мышцы.

Сфинголипиды

Другой группой фосфолипидов являются сфинголипиды. В их состав вместо глицерина входит высший двухатомный ненасыщенный аминоспирт сфингозин (число углеродных атомов 18, двойная связь имеет транс-конфигурацию). Гидроксильные группы расположены у первого и третьего углеродного атомов, аминогруппа находится при втором атоме углерода цепи, двой­ная связь - при четвертом атоме углерода:

Сфингозин

Отличие сфинголипидов от глицерофосфолипидов и в том, что жир­ные кислоты соединяются в них не с гидроксильными группами, а с аминогруппами аминоспирта, образуя амидные связи (-СО-NH-).Эта связь образуется между карбоксильной группой жирной кислоты и аминогруппой спирта. В сфинголипидах в значи­тельных количествах обнаружены лигноцериновая и нервоновая кислоты.

При гидроксильной группе в положении 1 в сфинголипидах имеет­ся остаток фосфорной кислоты, который в свою очередь этерифицирован с молекулой азотистого соединения - чаще всего с холином. Общая структура сфингомиелинов выглядит так:

Cфингомиелин

Общий план построения молекулы сфингомиелина в определенном отношении напоминает строение глицерофосфолипидов. Молекула сфин-гомиелина содержит как бы полярную «головку», которая несет одновременно и положительный (остаток холина), и отрицательный (остаток фосфорной кислоты) заряды, и два неполярных «хвоста» (длинная алифатическая цепь сфингозина и ацильный радикал жирной кислоты).

Сфингомиелины являются самыми распространенными сфинголипидами. Они находятся, в основном, в мембранах животных и растительных клеток. Особенно богата ими нервная ткань. Собственно название сфингомиелины отражает их функцию в живых тканях, где они образуют миелиновую оболочку вокруг нервных волокон в тканях печени, почек и других органов.

В некоторых сфингомиелинах, например выделенных из мозга и селезенки, вместо сфингозина найден спирт дигидросфингозин (восстановленный сфингозин):

СН 3 -(СН 2) 14 -СН-СН-СН 2 -СН 2 ОН

Дегидросфингозин

Из фосфолипидов растительно­го происхождения (из кукурузного зерна) выделен аминоспирт, весьма похожий на сфингозин:

Фитосфингозин

Этот же спирт найден в дрожжах и грибах, а недавно в мозге и почках челове­ка, что указывает на возможность существования аналогичных фосфолипидов в растительных и животных объектах.

Сфингофосфолипиды не растворимы в серном эфире, что используют при их отделении от фосфатидов. Они характеризуются также трудной растворимостью в ацетоне и большей устойчивостью к действию окислителей, чем фосфатиды.

Сфинголипидам свойственны весьма сложные пространственные конфигура­ции, связанные с возможностью оптической изомерии (два асимметричных угле­родных атома в молекуле) и цис-транс-изомерии по месту двойной связи. Этим объясняется их органная и видовая специфичность. Кроме того, установлено, что органная специфичность сфинголипидов зависит от качественного состава высших жирных кислот: так, для сфинголипидов мозга характерно присутствие нервоновой кислоты.

Гликолипиды

Вторую группу сложных липидов образуют гликолипиды (от греч. glykys-сладкий и липиды). Они характеризуются тем, что полярная моно- или олигосахаридная составляющая (глюкоза, галактоза, глюкозамин, галактозамин, их N-ацетильные производные и др.) через остаток многоатомного спирта (глицерин, сфингозин) соединяется с неполярными радикалами высших жирных кислот (пальмитиновой, стеарино­вой, олеиновой, лигноцериновой, нервоновой, цереброновой и др.) гликозидной исложноэфирной связями.

В зависимости от природы липидной части гликолипиды можно разделить на четыре группы:

1) гликозилдиглицериды, липидная часть которых представляет собой остаток глицерина, ацилированный в положения 1 и 2 высшими жирными кислотами;

2) гликосфинголипиды, в которых липидным фрагментом является церамид - остаток высшего аминоспирта (сфингозинового основания), N-ацилированного высшей жирной кислотой;

3) полипренилфосфатсахара, у которых липидная часть молекулы представляет собой остаток полипренола Н(СН 2 С(СН 3)=СНСН 2) n ОН;

4) гликолипиды микроорганизмов, в состав которых входят остатки высших жирных кислот, ацилирующих остатки сахаров или неуглеводных компонентов молекулы.

Подавляющее большинство гликолипидов относятся к первым двум группам и являются важными компонентами мембран.

Церамиды - основа гликолипидов. Водород в гидроксильной группе церамида может быть замещён на разные угле­водные фрагменты, что определяет принадлеж­ность гликолипида к определённому классу.

Сфингомиелин

Первая часть слова "сфинго" свидетельствует о том, что в состав молекулы входит вместо глицерина двухатомный ненасыщенный спирт - сфингозин. Наиболее широко распространенным в организме представителем этой группы соединений является сфингомиелин Сфингомиелин обнаружен в мембранах растительных и животных клеток; особенно богата сфингофосфолипидами нервная ткань, и в частности, мозг.

Характерной особенностью фосфолипидов является их дифильность, то есть способность растворяться как в водной среде, так и в нейтральных липидах. Это обусловлено наличием у фосфолипидов выраженных полярных свойств. При рН 7,0 их фосфатная группа всегда несет отрицательный заряд. Азотсодержащие группировки в составе фосфатидилхолина (холин) и фосфатидилэтаноламина (этаноламин) при рН 7,0 несут положительный заряд. Таким образом, при рН 7,0 эти глицерофосфолипиды представляют собой биполярные цвиттерионы и их суммарный заряд равен нулю. Остаток серина в молекуле фосфатидилсерина содержит -аминогруппу и карбоксильную группу. Следовательно, при рН 7,0 молекула фосфатидилсерина имеет две отрицательно и одну положительно заряженных группы и несет суммарный отрицательный заряд.

В то же время, радикалы жирных кислот в составе фосфолипидов не имеют электрического заряда в водной среде и таким образом обусловливают гидрофобность части молекулы фосфолипида. Наличие полярности за счет заряда полярных групп обусловливают гидрофильность. Поэтому на поверхности раздела масло-вода фосфолипиды располагаются таким образом, чтобы полярные группы находились в водной фазе, а неполярные группы - в масляной. За счет этого в водной среде они образуют бимолекулярный слой, а при достижении некоторой критической концентрации - мицеллы.]

На этом основано участие фосфолипидов в построении биологических мембран.

Обработка находящегося в водной среде дифильного липида ультразвуком приводит к образованию липосом. Липосома представляет собой замкнутый липидный бислой, внутри которого оказывается часть водной среды. Липосомы находят применение в клинике, косметологии в качестве своеобразных контейнеров и переносчиков лекарств, питательных веществ к определенным органам и для комбинированного действия на кожу.

Функциональная роль фосфолипидов не ограничивается их участием в построении биомембран. Так, они являются регуляторами активности ферментов. К примеру, фосфатидилхолин, фосфатидилсерин, сфингомиелин активируют или ингибируют активность ферментов, катализирующих процессы свертывания крови. Регуляторная функция липидов заключается в том, что ряд гормонов (половые, гормоны коры надпочечников) являются производными липидов. Кроме того фосфолипиды

Выполняют детергентную функцию в кишечнике и желчном пузыре. Они являются важным структурным компонентом желчи, наряду со свободным холестеролом и с желчными кислотами. Изменение соотношения любого из этих компонентов приводит к осаждению и формированию желчных камней. Фосфолипиды - это также важный компонент смешанных мицелл, которые образуются в ходе переваривания липидов.

Является источником арахидоновой кислоты - предшественника эйкозаноидов

Являются источниками вторичных мессенджеров - диацилглицерола и инозитолтрифосфата, о чем уже упоминалось выше

Обеспечивают прикрепление белков к мембране. Некоторые внеклеточные белки прикрепляются к внешней стороне плазматической мембраны за счет образования ковалентных связей с фосфатидилинозитолом. Примером таких белков могут служить ферменты: щелочная фосфатаза, липопротеин липаза, холинэстераза.

Принимают участие в формировании транспортных форм других липидов

Могут выполнять энергетическую функцию

Явяляются компонентом сурфактанта легких (см. ниже)