Что такое константа скорости химической реакции? Константа скорости реакции Эффективная константа скорости

Предмет химической кинетики.

Термодинамика учитывает только начальное и конечное состояние системы, позволяет с большой точностью предсказать принципиальную возможность протекания процесса, однако она не дает никаких сведений о механизме протекания процесса, об изменениях его во времени.

Все эти вопросы физической химии рассматриваются в разделе химической кинетики.

Раздел физической химии, посвящённый закономерностям протекания химических процессов во времени, называется химической кинетикой.

Задачи химической кинетики:

1. экспериментальное исследование скоростей реакций и их зависимость от условий протекания (концентрации реагирующих веществ, температуры, присутствия других веществ и т.д.);

2. установление механизма реакции, то есть числа элементарных стадий и состава образующихся промежуточных продуктов.

Количественное описание зависимости скорости реакции от концентрации реагирующих веществ базируется на основном постулате химической кинетики и составляет предмет формальной кинетики.

В общем виде химическую реакцию можно записывать следующим образом:

ν 1 А 1 + ν 2 А 2 +…+ ν i А i ν 1 ´А 1 ´ + ν 2 ´А 2 ´ +…+ν n ´А n ´,

где ν i и ν n ´ – стехиометрические коэффициенты исходных веществ и продуктов реакции соответственно; А i и А n ´ – исходные вещества и продукты реакции.

Скоростью химической реакции υ называется изменение количества реагирующих веществ в единицу времени в единице объёма (измеряется в моль/(л∙с)).

Так как количество реагирующих веществ изменяется во времени, то скорость реакции является функцией времени. Можно ввести понятие средней скорости реакции, рассматривающейся в определённый промежуток времени:

где n 1 и n 2 - концентрация одного из исходных веществ в начальный t 1 и конечныйt 2 момент времени.

Скорость реакции определяется по убыли количества одного из реагирующих веществ (со знаком «-») или по нарастанию количества одного из образующихся веществ (со знаком «+») в единицу времени в единице объёма.

При уменьшении часового интервала, когда, получаем выражение для истинной скорости в данный момент времени:

Если объем системы постоянен (V=const ), то можно использовать понятие концентрации:

Это уравнение рассматривают для реакций в растворах, когда изменением объёма можно пренебречь.

Химические реакции протекают, как правило, через несколько стадий. Скорость суммарной реакции определяется скоростью наиболее медленной стадии, называемой лимитирующей.

Скорость реакции зависит от многих факторов: природы и концентрации реагирующих веществ, температуры, присутствия других веществ (катализаторов, ингибиторов) и т.д.



В общем случае, согласно закону действующих масс , можно записать, что скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в некоторых степенях, равных порядку реакции по данному веществу:

, (1)

где - это скорость химической реакции;

k - константа скорости химической реакции;

- концентрации реагирующих веществ;

n i – порядок реакции по данному веществу.

Выражение (1) называется основным постулатом химической кинетики. При этом ν i = n i в тех случаях, когда реакция протекает в одну стадию, а также для всех реакций, которые протекают в условиях равновесия (независимо от того, что в условиях, далёких от равновесия, они могут протекать через ряд промежуточных стадий). В большинстве случаев порядок реакции не равен стехиометрическому коэффициенту (для многостадийных реакций) и определяется экспериментально.

Коэффициент пропорциональности в основном постулате химической кинетики называется константой скорости реакции k . Физический смысл коэффициентаk можно установить, если принять концентрации реагирующих веществ равными 1, тогда константа скорости химической реакции будет равна величине скорости реакции. Константа скорости k зависит от природы реагирующих веществ, температуры, но не зависит от концентрации исходных веществ.

Согласно закону действия масс скорость простой реакции равна

Константа скорости реакции k - коэффициент пропорциональности между скоростью химической реакции и произведением концентраций реагирующих веществ:
. Константа скорости численно равна скорости химической реакции, когда концентрации всех реагентов равны единице: W=k при C A =C B =1. Если реакция А с В по своему механизму сложная (в ней участвуют активные промежуточные продукты, катализатор и т. д.), подчиняется уравнению
, то k называют эффективной константой скорости реакции; IUPAC рекомендует называть k в этом случае коэффициентом скорости реакции. Нередко скорость сложной реакции не подчиняется степенному уравнению, а выражается иной зависимостью, например v=k 1 C 1 C 2 (1+k 2 C 2) –1 . Тогда k 1 и k 2 называют коэффициентами в уравнении для скорости реакции.

Часто реакцию проводят в условиях, когда концентрации всех реагентов, кроме одного, взяты в избытке и в ходе опыта практически не меняются. В этом случае

,

а коэффициент k набл = k
называют эффективной или наблюдаемой константой скорости реакции при С B >>С A . Для случая n A =1 такой коэффициент часто называют коэффициентом скорости реакции псевдопервого порядка. Константа скорости реакции порядка n имеет размерность: (время) –1 (концентрация) –(n –1) . Численное значение зависит от единиц, выбранных для измерения времени и концентрации.

При вычислении константы скорости простой реакции необходимо учитывать два обстоятельства: помнить, по какому реагенту измеряется скорость реакции и чему равен стехиометрический коэффициент и порядок реакции по этому реагенту. Например, реакция 2,4,6-триалкилфеноксильного радикала с гидропероксидом протекает в две последовательные стадии:

PhО +ROOH→PhOH+RO 2

PhO +RO 2 →ROOPhO

Стехиометрическое уравнение – 2PhО +RООН=РhОН+ROОPhО, но поскольку первая стадия определяет скорость реакции, W ROOH =k и W PhO =2k.

Таким образом, здесь не совпадают коэффициенты в кинетическом и стехиометрическом уравнениях для феноксильного радикала: порядок реакции по PhO равен 1, а стехиометрический коэффициент для PhO равен 2.

Методы вычисления константы скорости химической реакции . По кинетической кривой. Если n= 1, то k=t –1 ln 10 lg (C Ao /C A). Если суммарный порядок реакции ‑ n, а порядок реакции по данному компоненту равен 1, и все реагенты, кроме А, взяты в избытке, то

.

Для реакции А+В→продукты k находят из уравнения

При вычислении константы скорости по интегральной кинетической кривой в общем виде ставится задача по определению k в уравнении f(x)= –k`t (x ‑ относительная концентрация реагента).

Для реакции 1-го порядка f(x)=ln x, k`=k; для реакции 2-го порядка f(x)=x –1 –1, k=C o k и т.д. Из эксперимента получаем ряд значений (t 1 , x 1), (t 2 , x 2), …, (t n , x n). Прямая, проведенная в координатах f(x)–t, должна удовлетворять условию  i =f(x i)+kt i , Σ i =0. Отсюда следует, что k= Σf(x i)/Σt i .

По периоду полупревращения. Период полупревращения однозначно связан с константой скорости и исходной концентрацией реагента, что позволяет вычислить k. Так, для реакции первого порядка k=ln 2/τ 1/2 , для реакции второго порядка k=C o –1 τ 1/2 и т.д.

По начальной скорости реакции . Поскольку в начальный момент времени расходование реагентов незначительно,

и

По изменению скорости реакции во времени. Измерив концентрации реагентов в момент времени t` и t`` (С` и С``), можно вычислить среднюю скорость реакции и найти k, при ν=1 имеем

,
,
.

Специальные методы обработки кинетических кривых. Если кинетика реакции регистрируется по изменению какого-либо физического свойства системы x (оптическая плотность, электрическая проводимость и т.д.), связанного с концентрацией реагирующего вещества С так, что при C=C o , x=x o , а при С=0, х=x ∞ , то k можно определить из кинетической кривой x(t) следующими методами:

Метод Гуггенгейма (для реакций первого порядка). Измеряют x i в момент t i и x 1 ` в момент t i + и т.д. Из графика lg (х i –х i `)–t i находят k:

lg (x i –x i `)=lg[(x o –x ∞)(1–e – k )]–0,43kt i .

Метод Мангельсдорфа (для реакций первого порядка). Измерения проводят как в методе Гуггенгейма, но график строят в координатах x i ` – x i:

x i `=x i e –k  +x ∞ (1–e –k ),

наклон прямой равен e – k  , отсечение на оси ординат равно х ∞ (1–e – k ).

Метод Розвери (для реакций второго порядка). Параметр х измеряют в моменты времени t 1 , t 2 , t 3 разделенные постоянным интервалом времени . Константу скорости находят из уравнения:

.

Скорость гомогенной (однофазной) реакции зависит от природы реагирующих веществ, их концентрации и температуры. Скорость гетерогенных (многофазных) процессов зависит от размеров и состояния поверхности раздела фаз. Примечание. Гетерогенные – процессы, происходящие на поверхности раздела соприкасающихся фаз. (горение топлива, окисление металлов кислородом воздуха). Закон действующих масс. Справедлив для гомогенных реакций. Формулировка: при постоянной температуре скорость химической реакции пропорциональна произведению концентраций реагирующих веществ. Константа скорости обозначается как Пример. в квадратных скобках концентрации веществ.A+2B=3D «k» не зависит от концентрации в каждый момент времени. Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль/л.

28.Молекулярность и порядок реакции. Молекулярность элементарной реакции - число частиц, которые, согласно экспериментально установленному механизму реакции, участвуют в элементарном акте химического взаимодействия.Мономолекулярные реакции - реакции, в которых происходит химическое превращение одной молекулы (изомеризация, диссоциация и т. д.):H 2 S → H 2 + SБимолекулярные реакции - реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или различных):СН 3 Вr + КОН → СН 3 ОН + КВrТримолекулярные реакции - реакции, элементарный акт которых осуществляется при столкновении трех частиц:О 2 + NО + NО → 2NО 2 Реакции с молекулярностью более трёх неизвестны.Для элементарных реакций, проводимых при близких концентрациях исходных веществ, величины молекулярности и порядка реакции совпадают. Чётко определенной взаимосвязи между понятиями молекулярности и порядка реакции нет, так как порядок реакции характеризует кинетическое уравнение реакции, а молекулярность - механизм реакции. Порядок реакции по данному веществу - показатель степени при концентрации этого вещества в кинетическом уравнении реакции.Реакция нулевого порядка Кинетическое уравнение имеет следующий вид: Скорость реакции нулевого порядка постоянна во времени и не зависит от концентраций реагирующих веществ. Нулевой порядок характерен, например, для гетерогенных реакций в том случае, если скорость диффузии реагентов к поверхности раздела фаз меньше скорости их химического превращения.Реакция первого порядка Кинетическое уравнение реакции первого порядка: Приведение уравнения к линейному виду даёт уравнение: Константа скорости реакции вычисляется как тангенс угла наклона прямой к оси времени: Период полупревращения: Реакция второго порядка Для реакций второго порядка кинетическое уравнение имеет следующий вид: илиВ первом случае скорость реакции определяется уравнениемЛинейная форма уравнения:Константа скорости реакции равна тангенсу угла наклона прямой к оси времени: Во втором случае выражение для константы скорости реакции будет выглядеть так: Период полупревращения (для случая равных начальных концентраций!):

29.Кинетическая классификация по степени сложности. Обратимые и необратимые реакции. По степени сложности реакции подразделяются на изолированные, параллельные, сопряженные, последовательные (многоступенчатые), обратимые и необратимые. Изолированные – при их протекании образуются продукты только одного типа. Параллельные – в ходе них взятые вещества одновременно реагируют в двух или более направлениях (образуются разные продукты).Пример. Разложение бертолетовой солиСкорость реакции:Сопряженные – совместные реакции типа: Вторая реакция протекает лишь совместно с первой. А – актор реакции,B – индуктор реакции, С – акцептор. Последовательные . В – промежуточный продукт. Обратимые и необратимые. Подавляющее большинство химических реакций являются обратимыми, т.е. могут протекать в двух направлениях. Скорость реакции:v=v1-v2Различают практически необратимые и совершенно необратимые реакции. Практически необратимые – реакции, в результате которых образуется осадок. Совершенно необратимые – протекают только в одном направлении. Пример.

30.Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Уравнение Аррениуса. Энергия активации химической реакции. Аналитический и графический метод расчета. Правило Вант-Гоффа - эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант-Гоффна основании множества экспериментовсформулировал следующее правило : При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два-четыре раза.Уравнение, которое описывает это правило, следующее: Из уравнения Вант-Гоффа температурный коэффициент вычисляется по формуле: Уравне́ние Арре́ниуса устанавливает зависимость константы скоростиk химической реакцииоттемпературыT.Согласно простой модели столкновений, химическая реакция между двумя исходными веществами может происходить только в результате столкновения молекулэтих веществ. Но не каждое столкновение ведёт к химической реакции. Необходимо преодолеть определённыйэнергетический барьер, чтобы молекулы начали друг с другом реагировать. То есть молекулы должны обладать некой минимальной энергией (энергия активации), чтобы этот барьер преодолеть. Израспределения Больцманадля кинетической энергии молекул известно, что число молекул, обладающих энергией, пропорционально. В результате скорость химической реакции представляется уравнением, которое было получено шведским химикомСванте Аррениусомизтермодинамическихсоображений:ЗдесьA характеризует частоту столкновений реагирующих молекул, R - универсальная газовая постоянная. В рамках теории активных соударенийA зависит от температуры, но эта зависимость достаточно медленная:Оценки этого параметра показывают, что изменение температуры в диапазоне от 200 °C до 300 °C приводит к изменению частоты столкновений на 10 %.Энергия активации - минимальное количество энергии, которое требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция. Типичное обозначение энергии реакции - E a .Уравнение Аррениуса устанавливает связь между энергией активации и скоростью протекания реакции:. С повышением температуры растёт вероятность преодоления энергетического барьера.Уравнение Аррениуса часто представляют в логарифмической форме: lnk = lnА – Еа\RT удобной для графического определения энергии. Необходимо иметь несколько значений k при разных T, чтобы построить график ln k = f(T).

Здесь tg  =
.

Аналитический метод определения энергии активации применим, если есть возможность определить две константы скорости при двух температурах.
;

;

    константа скорости реакции - – скорость химической реакции в условиях, когда произведение концентраций реагирующих веществ равно 1 моль/л. Общая химия: учебник / А. В. Жолнин Константа скорости реакции – коэффициент пропорциональности в дифференциальном кинетическом… … Химические термины

    константа скорости реакции - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN reaction constant …

    константа скорости реакции - reakcijos greičio konstanta statusas T sritis chemija apibrėžtis Reakcijos, kurios reaguojančiųjų medžiagų koncentracijos lygios vienetui, greitis. atitikmenys: angl. rate constant; reaction constant rus. константа скорости реакции; удельная… … Chemijos terminų aiškinamasis žodynas

    константа скорости реакции - reakcijos spartos konstanta statusas T sritis Standartizacija ir metrologija apibrėžtis Reakcijos, kurios reaguojančių medžiagų koncentracijos yra lygios vienetui, sparta. atitikmenys: angl. reaction rate constant vok. Reaktionskonstante, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Химической реакции ее основная кинетическая характеристика; коэффициент пропорциональности в кинетическом уравнении, связывающем скорость реакции с концентрациями реагирующих веществ и их стехиометрическими коэффициентами. Для мономолекулярных… … Большой Энциклопедический словарь

    константа скорости каталитической реакции - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN catalytic coefficient … Справочник технического переводчика

    Химическая реакции, её основная кинетическая характеристика; коэффициент пропорциональности в кинетическом уравнении, связывающем скорость реакции с концентрациями реагирующих веществ и их стехиометрическими коэффициентами. Для мономолекулярных… … Энциклопедический словарь

    константа скорости химической реакции - изменение количества (концентрации) вещества, вступающего в реакцию или образующегося в ходе процесса, в единицу времени при данной температуре и концентрациях всех компонентов, равных единице: d[A]/dt =… … Энциклопедический словарь по металлургии

    Хим. реакции, её основная кинетич. характеристика; коэф. пропорциональности в кинетич. ур нии, связывающем скорость реакции с концентрациями реагирующих в в и их стехиометрич. коэффициентами. Для мономолекулярных реакций К. с. имеет размерность с … Естествознание. Энциклопедический словарь

    Относительные константы скорости реакции CH 3 I + Cl - в разных растворителях при 25 °С (по Паркеру) - Растворитель Относительная константа скорости CH3OH 1 HCONH2 12,5 HCONHCH3 … Химический справочник

Элементарный акт химической реакции осуществляется в момент столкновения реагирующих частиц. Увеличение кон­центрации реагентов соответствует увеличению числа частиц в объеме, что приводит к более частым их столкновениям, а сле­довательно, к увеличению скорости реакции. Количественная за­висимость скорости реакции от концентрации выражается ос­новным постулатом химической кинетики, называемым законом действующих масс.

Скорость простой гомогенной реакции при постоянной температуре пропорциональна произведению концентра­ций реагирующих веществ, возведенных в степени, чис­ленно равные их стехиометрическим коэффициентам.

где а и b - стехиометрические коэффициенты реагентов; с(А) и с(В) -молярные концентрации реагентов; k - константа скорости реакции.

Это выражение для скорости реакции является кинетиче­ским уравнением только для простой реакции.

Константа скорости реакции является индивидуальной ха­рактеристикой реакции. Значение константы скорости реакции зависит от природы реагирующих веществ, температуры систе­мы и наличия в ней катализатора. Значение k для данных ус­ловий реакции не зависит от концентрации реагентов, и поэто­му константа скорости остается неизменной в течение реакции и является ее фундаментальным кинетическим параметром.

Значение константы скорости реакции численно равно скорости реакции при концентрациях реагентов, равных 1 моль/л.

Определить константу скорости реакции можно только экс­периментальным путем, изучая кинетику этой реакции и со­ставляя ее кинетическое уравнение по полученным данным.

Кинетическое уравнение каждой реакции определяют экспе­риментально, так как его нельзя предсказать по виду химическо­го уравнения реакции. Поэтому вначале при постоянной темпе­ратуре экспериментально устанавливают зависимость скорости реакции от концентрации каждого реагента в отдельности, при этом концентрации всех других реагентов должны оставаться постоянными, что обеспечивается обычно большим их избытком в реакционной среде. Для определения концентрации интере­сующего реагента в любой момент времени используют методы: титрования (разд. 8.3.2), потенциометрии (разд. 25.6), кондуктометрии (разд. 24.5), хроматографии (разд. 26.7) или другие, вы­бирая из них такой, чтобы значение измеряемой с помощью этого метода характеристики четко зависело от концентрации данно­го реагента. По полученным экспериментальным данным состав­ляют кинетическое уравнение для изучаемой реакции:

где n А и n b - порядок реакции по реагентам А и В соответственно.

Порядок реакции по реагенту равен показателю сте­пени, в которую надо возвести концентрацию данного реагента в кинетическом уравнении сложной реакции, чтобы вычисленная по этому уравнению скорость была равна скорости, найденной экспериментально.

Таким образом, порядок реакции по реагенту является для дан­ной реакции кинетическим параметром, наряду с константой скорости.

Порядок реакции по реагенту не зависит от стехиометриче-ских коэффициентов в уравнении реакции, а определяется ее механизмом. Если значения порядка реакции по каждому реа­генту совпадают со стехиометрическими коэффициентами в хи­мическом уравнении реакции, то это обычно означает, что изу­чаемая реакция - простая.

Несоответствие между порядком реакции по реагенту и его стехиометрическим коэффициентом в уравнении реакции сви­детельствует о сложности и многостадийности данной реакции. Представление о механизме такой реакции можно составить, ес­ли предположить, что ее скорость в основном определяется ско­ростью наиболее медленной, т. е. лимитирующей, стадии. В этом случае кинетическое уравнение, полученное по эксперименталь­ным данным, прежде всего отражает протекание именно лими­тирующей стадии, а не всего процесса.

Рассмотрим реакцию термического распада оксида азота(V):

Однако экспериментальные данные показывают, что скорость этой реакции пропорциональна не второй, а первой степени кон­центрации оксида азота(V), и в действительности ее кинетиче­ское уравнение имеет вид:

Это позволяет предположить следующий механизм реакции, включающий две стадии, резко отличающиеся по скорости про­текания:


Только в случае, если скорость I стадии несравненно мень­ше, чем второй, будет наблюдаться полное согласие с получен­ными экспериментально кинетическими данными, отраженны­ми в кинетическом уравнении, где порядок реакции по N2O5 равен 1.

Рис. 5.2. Определение порядка реакции n А по компоненту А

Для экспериментального определения значений константы скорости реакции (k) и порядка реакции по реагенту А (n А) необходимо исследовать зависимость скорости этой реакции от кон­центрации реагента А при ус­ловии, что концентрации дру­гих реагентов в реакционной смеси будут настолько больши­ми, что практически не будут изменяться в ходе данного экс­перимента. Тогда кинетическое уравнение изучаемой реакции будет иметь вид:

После логарифмирования этого выражения получим уравнение

которое при графическом выражении имеет вид прямой линии, тангенс угла наклона которой к оси lg с(А) равен порядку ре­акции п А (рис. 5.2). Отрезок, отсекаемый этой прямой на оси lg у, когда lg с(А) = 0, дает значение lg k. Следовательно, при подобной обработке экспериментальных данных можно опреде­лить значения важнейших кинетических параметров реакции -порядка реакции по реагенту и константы скорости данной ре­акции.

Кинетические кривые изменения концентрации реагентов для двух последовательно протекающих реакций, когда констан­ты скорости реакций k1 и k2 не сильно отличаются друг от друга, имеют сложный вид (рис. 5.3). Кинетическая кривая А соответст­вует монотонному убыванию концентрации исходного вещества А.

Концентрация промежуточно­го вещества В проходит через максимум, так как вначале оно накапливается, а потом исчеза­ет. Высота этого максимума Сl;(В) и время его достижения (тl,) могут быть самыми разны­ми в зависимости от соотно­шения значений констант k1 и k 2 . Кривая D характеризует на­копление продукта реакции D.


Рис. 5.3. Кинетические кривые изменения концентраций компо­нентов А, В и D для указанного превращения

Точный анализ кинетики подобных сложных реакций требует решения системы дифференциальных уравнений.