Элементы механики сплошных сред. Элементы механики сплошных сред Постоянный электрический ток

Жидкости и газы во многом схожи по своим свойствам. Они текучи и принимают форму того сосуда, в котором находятся. Они подчиняются законам Паскаля и Архимеда.

При рассмотрении движения жидкостей можно пренебречь силами трения между слоями и считать их абсолютно несжимаемыми. Такая абсолютно невязкая и абсолютно несжимаемая жидкость называется идеальной .

Движение жидкости можно описать, если показать траектории движения ее частиц таким образом, чтобы касательная в любой точке траектории совпадала с вектором скорости. Эти линии называются линиями тока . Линии тока принято проводить так, чтобы их густота была больше там, где больше скорость течения жидкости (рис.2.11).


Величина и направление вектора скорости V в жидкости могут меняться со временем, то и картина линий тока может непрерывно меняться. Если же вектора скорости в каждой точке пространства не меняются, то течение жидкости называют стационарным .

Часть жидкости, ограниченная линиями тока, называется трубкой тока . Частицы жидкости, двигаясь внутри трубки тока, не пересекают ее стенок.

Рассмотрим одну трубку тока и обозначим через S 1 и S 2 площади поперечного сечения в ней (рис.2.12). Тогда за единицу времени через S 1 и S 2 протекают одинаковые объемы жидкости:

S 1 V 1 =S 2 V 2 (2.47)

это применимо к любому сечению трубки тока. Следовательно, для идеальной жидкости величина SV=const в любом сечении трубки тока. Это соотношение называется неразрывностью струи . Из него следует:

т.е. скорость V стационарного течения жидкости обратно пропорциональна площади сечения S трубки тока, а это может быть обусловлено градиентом давления в жидкости вдоль трубки тока. Теорема о неразрывности струи (2.47) применима и к реальным жидкостям (газам) при их течении в трубах разного сечения, если силы трения невелики.

Уравнение Бернулли . Выделим в идеальной жидкости трубку тока переменного сечения (рис.2.12). В силу неразрывности струи через S 1 и S 2 за одно время протекают одинаковые объемы жидкости ΔV.


Энергия каждой частицы жидкости складывается из ее кинетической энергии и потенциальной энергии. Тогда при переходе от одного сечения трубки токи к другому приращение энергии жидкости будет:

В идеальной жидкости приращение ΔW должно равняться работе сил давления на изменение объема ΔV, т.е. А=(Р 1 -Р 2)· ΔV .

Приравнивая ΔW=A и сокращая на ΔVи учитывая, что (ρ -плотность жидкости), получим:

т.к. сечение трубки тока взяты произвольно, то для идеальной жидкости вдоль любой линии тока выполняется:

. (2.48)

где Р -статическое давление в определенном сечении S трубки тока;

Динамическое давление для этого сечения; V-скорость протекания жидкости через это сечение;

ρgh -гидростатическое давление.

Уравнение (2.48) называется уравнением Бернулли .

Вязкая жидкость . В реальной жидкости при перемещении ее слоев относительно друг друга возникают силы внутреннего трения (вязкость). Пусть два слоя жидкости отстоят друг от друга на расстояние Δх и движутся со скоростями V 1 и V 2 (рис.2.13).


Тогда сила внутреннего трения между слоями (закон Ньютона):

, (2.49)

где η -коэффициент динамической вязкости жидкости:

Средняя арифметическая скорость молекул;

Средняя длина свободного пробега молекул;

Градиент скорости слоев; ΔS – площадь соприкасающихся слоев.

Слоистое течение жидкости называется ламинарным . При возрастании скорости слоистый характер течения нарушается, происходит перемешивание жидкости. Такое течение называют турбулентным .

При ламинарном течении поток жидкости Q в трубе радиуса R пропорционален перепаду давления на единице длины трубы ΔР/ℓ :

Формула Пуазейля. (2.51)

В реальных жидкостях и газах движущиеся тела испытывают действия силы сопротивления. Например, сила сопротивления, действующая на шарик, равномерно движущийся в вязкой среде, пропорциональна его скорости V:

Формула Стокса, (2.52)

где r -радиус шарика.

При увеличении скорости движения обтекание тела нарушается, позади тела образуются завихрения, на что дополнительно тратится энергия. Это приводит к возрастанию лобового сопротивления.

Завершением космичес­кого полета считается посадка на планету. К настоящему времени только три страны научились возвращать на Землю космические аппараты: Россия, США и Китай.

Для планет с атмосферой (рис. 3.19) проблема посадки сводится главным образом к решению трех задач: преодоление высокого уровня перегрузок; защита от аэродинамического нагрева; управление временем достижения планеты и координатами точки посадки.

Рис. 3,19. Схема спуска КА с орбиты и посадки на планету с атмосферой:

N - включение тормозного двигателя; А - сход КА с орбиты; М - отделение СА от орбитального КА; В - вход СА в плотные слои атмосферы; С - начало работы пара­шютной системы посадки; D - посадка на поверхность планеты;

1 – баллистичес­кий спуск; 2 – планирующий спуск

При посадке на планету без атмосферы (рис. 3.20, а , б ) снимается проблема защиты от аэродинамического нагрева.

КА, находящийся на орбите искусственного спутника планеты или приближающийся к планете с атмосферой для совершения посадки на нее обладает большим запасом кинетической энергии, связанной со скоростью КА и его массой, и потенциальной энергии, обусловленной положением КА относительно поверхности планеты.

Рис. 3.20. Спуск и посадка КА на планету без атмосферы:

а - спуск на планету с предварительным выходом на орбиту ожидания;

б - мягкая посадка КА с тормозным двигателем и посадочным устройством;

I - гиперболичес­кая траектория подлета к планете; II - орбитальная траектория;

III - траектория спуска с орбиты; 1, 2, 3 - активные участки полета при торможении и мягкой по­садке

При входе в плотные слои атмосферы перед носовой частью СА возникает ударная волна, нагревающая газ до высокой температуры. По мере погружения в атмосферу СА тормозится, скорость его уменьшается, а раскаленный газ все больше нагревает СА. Кинетическая энергия аппарата превращается в тепло. При этом большая часть энергии отводится в окружающее пространство двумя путями: большая часть тепла отводится в окружающую атмосферу из-за действия сильных ударных волн и за счет теплоизлучения с нагретой поверхности СА.

Наиболее сильные ударные волны возникают при затупленной форме носовой части, вот почему для СА применяют затупленные формы, а не заостренные, характерные для полета при малых скоростях.

С ростом скоростей и температур большая часть тепла передается к аппарату не за счет трения о сжатые слои атмосферы, а за счет излучения и конвекции от ударной волны.

Для отвода тепла от поверхности СА применяются следующие методы:

– поглощения тепла теплозащитным слоем;

– радиационного охлаждения поверхности;

– применения уносимых покрытий.

До входа в плотные слои атмосферы траектория КА подчиняется законам небесной механики. В атмосфере на аппарат помимо гравитаци­онных сил действуют аэродинамические и центробежные силы, изменяющие форму траектории его движения. Сила притяжения направлена к центру планеты, сила аэродинамического сопротивления по направлению, противоположному вектору скорости, центробежная и подъемная силы – перпендикулярно направлению движения СА. Сила аэродинамического сопротивления уменьшает скорость аппарата, в то время как центробежная и подъемная силы сообщают ему ускорения в направлении, перпендикулярном его движению.

Характер траектории спуска в атмосфере определяется в основном его аэродинамическими характеристиками. При отсутствии подъемной силы у СА траектория его движения в атмосфере называется баллистичес­кой (траектории спуска СА космических кораблей серий «Восток» и «Восход»), а при наличии подъемной силы – либо планирующей (СА КК Союз и «Аполлон», а также «Спейс Шаттл»), либо рикошети­рующей (СА КК Союз и «Аполлон»). Движение по планетоцентрической орбите не предъявляет высоких требований к точности наведения при входе в атмосферу, поскольку путем включения двигательной установки для торможения или ускорения сравнительно легко скорректировать траекторию. При входе в атмосферу со скоростью, превышающей первую космическую, ошибки в расчетах наиболее опасны, так как слишком крутой спуск может привести к разрушению СА, а слишком пологий – к удалению от планеты.

При баллистическом спуске вектор равнодействующей аэродинамических сил направлен прямо противоположно вектору скорости движения аппарата. Спуск по баллистической траектории не требует управления. Недостатком этого способа является большая крутизна траектории, и, как следствие, вхождение аппарата в плотные слои атмосферы на большой скорости, что приводит к сильному аэродинамическому нагреву аппарата и к перегрузкам, иногда превышающим 10g – близким к предельно-допустимым значениям для человека.

При аэродинамическом спуске внешний корпус аппарата имеет, как правило, коническую форму, причём ось конуса составляет некоторый угол (угол атаки) с вектором скорости аппарата, за счёт чего равнодействующая аэродинамических сил имеет составляющую, перпендикулярную к вектору скорости аппарата – подъёмную силу. Благодаря подъёмной силе, аппарат снижается медленнее, траектория его спуска становится более пологой, при этом участок торможения растягивается и по длине и во времени, а максимальные перегрузки и интенсивность аэродинамического нагрева могут быть снижены в несколько раз, по сравнению с баллистическим торможением, что делает планирующий спуск для людей более безопасным и комфортным.

Угол атаки при спуске меняется в зависимости от скорости полёта и текущей плотности воздуха. В верхних, разреженных слоях атмосферы он может достигать 40°, постепенно уменьшаясь со снижением аппарата. Это требует наличия на СА системы управления планирующим полётом, что усложняет и утяжеляет аппарат, и в случаях, когда он служит для спуска только аппаратуры, которая способна выдерживать более высокие перегрузки, чем человек, используется, как правило, баллистическое торможение.

Орбитальная ступень «Спейс Шаттл», при возврате на Землю выполняющий функцию спускаемого аппарата, планирует на всём участке спуска от входа в атмосферу до касания шасси посадочной полосы, после чего выпускается тормозной парашют.

После того, как на участке аэродинамического торможения скорость аппарата снизится до дозвуковой далее спуск СА может осуществляться с помощью парашютов. Парашют в плотной атмосфере гасит скорость аппарата почти до нуля и обеспечивает мягкую посадку его на поверхность планеты.

В разреженной атмосфере Марса парашюты менее эффективны, поэтому на заключительном участке спуска парашют отцепляется и включаются посадочные ракетные двигатели.

Спускаемые пилотируемые аппараты космических кораблей серии Союз ТМА-01М, предназначенные для приземления на сушу, также имеют твёрдотопливные тормозные двигатели, включающиеся за несколько секунд до касания земли, чтобы обеспечить более безопасную и комфортную посадку.

Спускаемый аппарат станции Венера-13 после спуска на парашюте до высоты 47 км сбросил его и возобновил аэродинамическое торможение. Такая программа спуска была продиктована особенностями атмосферы Венеры, нижние слои которой очень плотные и горячие (до 500° С), и парашюты из ткани не выдержали бы таких условий.

Следует отметить, что в некоторых проектах космических кораблей многоразового использования (в частности, одноступенчатых вертикального взлета и посадки, например, Delta Clipper) предполагается на конечном этапе спуска, после аэродинамического торможения в атмосфере, также производить беспарашютную моторную посадку на ракетных двигателях. Конструктивно спускаемые аппараты могут существенно отличаться друг от друга в зависимости от характера полезной нагрузки и от физических условий на поверхности планеты, на которую производится посадка.

При посадке на планету без атмосферы снимается проблема аэродинамического нагрева, но для осуществления посадки гашение скорости осуществляется с помощью тормозной двигательной установки, которая должна работать в режиме программируемой тяги, а масса топлива при этом может значительно превышать массу самого СА.

ЭЛЕМЕНТЫ МЕХАНИКИ СПЛОШНЫХ СРЕД

Сплошной считается среда, для которой характерно равномерное распределение вещества – т.е. среда с одинаковой плотностью. Таковыми являются жидкости и газы.

Поэтому в этом разделе мы рассмотрим основные законы, которые выполняются в этих средах.

ЛЕКЦИЯ №5 Элементы механики сплошных сред
Физическая модель: сплошная среда – это модель вещества, в
рамках которой пренебрегают внутренним строением вещества,
полагая, что вещество непрерывно распределено
по всему
занимаемому им объёму и целиком заполняет этот объём.
Однородной называется среда, имеющая в каждой точке одинаковые
свойства.
Изотропной называется среда, свойства которой одинаковы по всем
направлениям.
Агрегатные состояния вещества
Твердое тело – состояние вещества, характеризующееся
фиксированным объемом и неизменностью формы.
Жидкость

состояние
вещества,
характеризующееся
фиксированным объемом, но не имеющее определенной формы.
Газ – состояние вещества, при котором вещество заполняет весь
предоставленный ему объем.

Механика деформируемого тела
Деформация – изменение формы и размеров тела.
Упругость - свойство тел сопротивляться изменению их объема и
формы под воздействием нагрузок.
Деформация называется упругой, если она исчезает после снятия
нагрузки и – пластической, если она после снятия нагрузки не
исчезает.
В теории упругости доказывается, что все виды деформаций
(растяжение - сжатие, сдвиг, изгиб, кручение) могут быть сведены к
одновременно происходящим деформациям растяжения - сжатия и
сдвига.

Деформация растяжения – сжатия
Растяжение - сжатие - увеличение (или
уменьшение) длины тела цилиндрической или
призматической формы, вызываемое силой,
направленной вдоль продольной его оси.
Абсолютная деформация – величина, равная
изменению
размеров тела, вызванному
внешним воздействием:
l l l0
,
(5.1)
где l0 и l - начальная и конечная длина тела.
Закон Гука (I) (Роберт Гук, 1660 г.): сила
упругости
пропорциональна
величине
абсолютной деформации и направлена в
сторону ее уменьшения:
F k l ,
где k - коэффициент упругости тела.
(5.2)

Относительная деформация:
l l0
.
(5.3)
Механическое напряжение – величина,
характеризующая состояние
деформированного тела =Па:
F S
,
(5.4)
где F - сила, вызывающая деформацию,
S - площадь сечения тела.
Закон Гука (II): Механическое напряжение,
возникающее в теле, пропорционально
величине его относительной деформации:
E
,
(5.5)
где E - модуль Юнга – величина,
характеризующая
упругие
свойства
материала, численно равная напряжению,
возникающему в теле при единичной
относительной деформации, [E]=Па.

Деформации твердых тел подчиняются закону Гука до
известного предела. Связь между деформацией и напряжением
представляется в виде диаграммы напряжений, качественный ход
которой рассмотрен для металлического бруска.

Энергия упругой деформации
При растяжении – сжатии энергия упругой деформации
l
k l 2 1 2
(5.8)
kxdx
E V ,
2
2
0
где V – объем деформируемого тела.
Объемная плотность
растяжении – сжатии
w
энергии
1 2
E
V 2
Объемная плотность
деформации сдвига
упругой
.
энергии
1
w G 2
2
при
(5.9)
упругой
.
деформации
деформации
(5.10)
при

Элементы механики жидкостей и газов
(гидро- и аэромеханика)
Находясь в твердом агрегатном состоянии, тело одновременно
обладает как упругостью формы, так и упругостью объема (или, что
то же самое, при деформациях в твердом теле возникают как
нормальные, так и тангенциальные механические напряжения).
Жидкости
и газы обладают лишь упругостью объема, но не
обладают упругостью формы (они принимают форму сосуда, в
котором
жидкостей
находятся).
и
газов
Следствием
является
этой
общей
одинаковость
в
особенности
качественном
отношении большинства механических свойств жидкостей и газов, а
их отличием являются
лишь
количественные характеристики
(например, как правило, плотность жидкости больше плотности
газа). Поэтому в рамках механики сплошных сред используется
единый подход к изучению жидкостей и газов.

Исходные характеристики
Плотность вещества скалярная физическая величина,
характеризующая распределение массы по объему вещества и
определяемая отношением массы вещества, заключённой в
некотором объёме, к величине этого объёма =м/кг3.
В случае однородной среды плотность вещества рассчитывается по
формуле
m V .
(5.11)
В общем случае неоднородной среды масса и плотность вещества
связаны соотношением
V
(5.12)
m dV .
0
Давление
– скалярная величина, характеризующая состояние
жидкости или газа и равная силе, которая действует на единичную
поверхность в направлении нормали к ней [p]=Па:
p Fn S
.
(5.13)

Элементы гидростатики
Особенности сил, действующих внутри покоящейся жидкости
(газа)
1) Если внутри покоящейся жидкости выделить небольшой объем, то
жидкость на этот объем оказывает одинаковое давление во всех
направлениях.
2) Покоящаяся жидкость действует на соприкасающуюся с ней
поверхность твердого тела с силой, направленной по нормали к этой
поверхности.

Уравнение неразрывности
Трубка тока - часть жидкости, ограниченная линиями тока.
Стационарным (или установившимся) называется такое течение
жидкости, при котором форма и расположение линий тока, а также
значения скоростей в каждой точке движущейся жидкости со
временем не изменяются.
Массовый расход жидкости – масса жидкости, проходящая через
поперечное сечение трубки тока в единицу времени =кг/с:
Qm m t Sv ,
(5.15)
где и v – плотность и скорость течения жидкости в сечении S.

Уравнение
неразрывности

математическое
соотношение,
в
соответствии с которым при стационарном течении жидкости ее
массовый расход в каждом сечении трубки тока один и тот же:
1S1v 1 2S2v 2 или Sv const
,
(5.16)

Несжимаемой называется жидкость, плотность которой не зависит от
температуры и давления.
Объемный расход жидкости – объем жидкости, проходящий через
поперечное сечение трубки тока в единицу времени =м3/с:
QV V t Sv ,
(5.17)
Уравнение неразрывности несжимаемой однородной жидкости –
математическое соотношение, в соответствии с которым при
стационарном течении несжимаемой однородной жидкости ее
объемный расход в каждом сечении трубки тока один и тот же:
S1v 1 S2v 2 или Sv const
,
(5.18)

Вязкость – свойство газов и жидкостей оказывать сопротивление
перемещению одной их части относительно другой.
Физическая модель: идеальная жидкость – воображаемая
несжимаемая жидкость, в которой отсутствуют вязкость и
теплопроводность.
Уравнение Бернулли (Даниил Бернулли 1738 г.) - уравнение,
являющееся
следствием
закона
сохранения
механической
энергии для стационарного потока идеальной несжимаемой жидкости
и записанное для произвольного сечения трубки тока, находящейся в
поле сил тяжести:
v 12
v 22
v 2
gh1 p1
gh2 p2 или
gh p const . (5.19)
2
2
2

В уравнении Бернулли (5.19):
p - статическое давление (давление жидкости на поверхность
обтекаемого ею тела;
v 2
- динамическое давление;
2
gh - гидростатическое давление.

Внутреннее трение (вязкость). Закон Ньютона
Закон Ньютона (Исаак Ньютон, 1686 г.): сила внутреннего трения,
приходящаяся на единицу площади движущихся слоев жидкости или
газа, прямо пропорциональна градиенту скорости движения слоев:
F
S
dv
dy
,
(5.20)
где - коэффициент внутреннего трения (динамическая вязкость),
= м2 /с.

Виды течения вязкой жидкости
Ламинарное течение - форма течение, при которой жидкость или
газ перемещается слоями без перемешивания и пульсаций (то есть
беспорядочных быстрых изменений скорости и давления).
Турбулентное течение - форма течения жидкости или газа, при
которой
их
элементы
совершают
неупорядоченные,
неустановившиеся движения по сложным траекториям, что приводит к
интенсивному перемешиванию между слоями движущихся жидкости
или газа.

Число Рейнольдса
Критерий перехода ламинарного режима течения жидкости в
турбулентный режим основан на использовании числа Рейнольдса
(О́сборн Рéйнольдс, 1876-1883 гг.).
В случае движения жидкости по трубе число Рейнольдса
определяется как
v d
Re
,
(5.21)
где v – средняя по сечению трубы скорость жидкости; d – диаметр
трубы; и - плотность и коэффициент внутреннего трения
жидкости.
При значениях Re<2000 реализуется ламинарный режим течения
жидкости по трубе, а при Re>4000 – турбулентный режим. При
значениях 2000 наблюдается смесь ламинарного и турбулентного потоков).


Рассмотрим течение вязкой жидкости, обратившись непосредственно
к опыту. При помощи резинового шланга подсоединим к водопроводному
крану тонкую горизонтальную стеклянную трубку с впаянными в нее
вертикальными манометрическими трубками (см. рисунок).
При небольшой скорости течения хорошо видно понижение уровня
воды в манометрических трубках в направлении течения (h1>h2>h3). Это
указывает на наличие градиента давления вдоль оси трубки –
статическое давление в жидкости уменьшается по потоку.

Ламинарное течение вязкой жидкости в горизонтальной трубе
При равномерном прямолинейном течении жидкости силы давления
уравновешиваются силами вязкости.

Распределение
сечении
потока
скоростей
вязкой
в
поперечном
жидкости
можно
наблюдать при ее вытекании из вертикальной
трубки через узкое отверстие (см. рисунок).
Если, например, при закрытом кране К налить
вначале
неподкрашенный глицерин, а затем
сверху осторожно добавить подкрашенный, то в
состоянии равновесия граница раздела Г будет
горизонтальной.
Если кран К открыть, то граница примет
форму, похожую на параболоид вращения. Это
указывает
на
существование
распределения
скоростей в сечении трубки при вязком течении
глицерина.

Формула Пуазейля
Распределение скоростей в сечении горизонтальной трубы при
ламинарном течении вязкой жидкости определяется формулой
p 2 2
v r
R r
4 l
,
(5.23)
где R и l радиус и длина трубы, соответственно, p – разность
давлений на концах трубы, r – расстояние от оси трубы.
Объемный расход жидкости определяется формулой Пуазейля
(Жан Пуазейль, 1840 г.):
R 4 p
.
(5.24)
Qv
8 l

Движение тел в вязкой среде
При движении тел в жидкости или газе на тело
действует сила внутреннего трения, зависящая от
скорости движения тела. При малых скоростях
наблюдается
ламинарное
обтекание
тела
жидкостью или газа и сила внутреннего трения
оказывается
пропорциональной
скорости
движения тела и определяется формулой Стокса
(Джордж Стокс, 1851 г.):
F b l v
,
(5.25)
где b – постоянная, зависящая от формы тела и
его ориентации относительно потока, l –
характерный размер тела.
Для шара (b=6 , l=R) сила внутреннего трения:
F 6 Rv
где R – радиус шара.
,

План

1. Понятие сплошной среды. Общие свойства жидкостей и газов. Идеальная и вязкая жидкость. Уравнение Бернулли. Ламинарное и турбулентное течение жидкостей. Формула Стокса. Формула Пуазейля.

2. Упругие напряжения. Энергия упруго деформированного тела.

Тезисы

1. Объем газа определяется объемом того сосуда, который газ занимает. В жидкостях в отличие от газов среднее расстояние между молекулами остается практически постоянным, поэтому жидкость обладает практически неизменным объемом. В механике с большой степенью точно­сти жидкости и газы рассматриваются как сплошные, непрерывно распределенные в занятой ими части пространства. Плот­ность жидкости мало зависит от давления. Плотность же газов от давления зависит существенно. Из опыта известно, что сжи­маемостью жидкости и газа во многих за­дачах можно пренебречь и пользоваться единым понятием несжимаемой жидкости, плотность которой всюду одинакова и не изменяется со временем. Идеаль­ная жидкость - физическая абстракция, т. е. воображаемая жидкость, в которой от­сутствуют силы внутреннего трения. Идеаль­ная жидкость - воображаемая жидкость, в которой от­сутствуют силы внутреннего трения. Ей противоречит вязкая жидкость. Физическая величина, определяемая нормальной силой, действующей со сторо­ны жидкости на единицу площади, назы­вается давлением р жидкости . Единица давления - паскаль (Па): 1 Па равен давлению, создаваемому си­лой 1 Н, равномерно распределенной по нормальной к ней поверхности площадью 1 м 2 (1 Па=1 Н/м 2). Давление при равновесии жидкостей (газов) подчиняется закону Паскаля: давление в любом месте покоящейся жид­кости одинаково по всем направлениям, причем давление одинаково передается по всему объему, занятому покоящейся жид­костью.

Давление изменяется линейно с высо­той. Давление Р=rgh называется гидростати­ческим. Сила давле­ния на нижние слои жидкости боль­ше, чем на верхние, поэтому на тело, по­груженное в жидкость, действует выталки­вающая сила, определяемая законом Архимеда: на тело, погруженное в жид­кость (газ), действует со стороны этой жидкости направленная вверх выталкива­ющая сила, равная весу вытесненной те­лом жидкости (газа) , где r - плотность жидкости, V - объем погруженного в жидкость тела.

Движение жидкостей называется течени­ем, а совокупность частиц движущейся жидкости - потоком. Графически движе­ние жидкостей изображается с помощью линий тока, которые проводятся так, что касательные к ним совпадают по направ­лению с вектором скорости жидкости в со­ответствующих точках пространства (рис. 45). По картине линий тока можно су­дить о направлении и модуле скорости в разных точках пространства, т. е. можно определить состояние движения жидкости. Часть жидкости, ограниченную линия­ми тока, называют трубкой тока. Течение жидкости называется установившимся (или стационарным), если форма и распо­ложение линий тока, а также значения скоростей в каждой ее точке со временем не изменяются.


Рассмотрим какую-либо трубку тока. Выберем два ее сечения S 1 и S 2 , перпенди­кулярные направлению скорости (рис. 46). Ес­ли жидкость несжимаема (r=const), то через сечение S 2 пройдет за 1 с такой же объем жидкости, как и через сечение S 1 , т. е. Произведение скоро­сти течения несжимаемой жидкости на поперечное сечение трубки тока есть ве­личина постоянная для данной трубки то­ка. Соотношение называется урав­нением неразрывности для несжимаемой жидкости. - уравне­ние Бернулли - выражение закона сохранения энергии применительно к уста­новившемуся течению идеальной жидко­сти (здесь р - статическое давление (давление жидкости на поверхность обтекаемого ею тела), величина - динамическое давление, - гидростатическое давление). Для горизонтальной трубки тока уравнение Бернулли записывается в виде , где левая часть называется полным давлением. - форму­ла Торричелли

Вязкость - это свой­ство реальных жидкостей оказывать со­противление перемещению одной части жидкости относительно другой. При пере­мещении одних слоев реальной жидкости относительно других возникают силы внутреннего трения, направленные по ка­сательной к поверхности слоев. Сила внутреннего трения F тем боль­ше, чем больше рассматриваемая площадь поверхности слоя S, и зависит от того, насколько быстро меняется скорость течения жидкости при переходе от слоя к слою. Величина Dv/Dx показывает, как быстро меняется скорость при перехо­де от слоя к слою в направлении х, пер­пендикулярном направлению движения слоев, и называется градиентом скорости. Таким образом, модуль силы внутреннего трения равен , где коэффициент пропорциональности h, зависящий от природы жидкости, называ­ется динамической вязкостью (или просто вязкостью). Единица вязкости - паскаль секунда (Па с) (1 Па с=1 Н с/м 2). Чем больше вязкость, тем сильнее жидкость отличается от идеальной, тем большие силы внутреннего трения в ней возникают. Вязкость зависит от темпера­туры, причем характер этой зависимости для жидкостей и газов различен (для жидкостей с увеличением температуры уменьшается, у газов, наоборот, увеличи­вается), что указывает на различие в них механизмов внутреннего трения. Особенно сильно от температуры зависит вязкость масел. Методы определения вязкости:

1) формула Стокса ; 2) формула Пуазейля

2. Деформация называется упругой, если после прекращения действия внешних сил тело принимает первоначальные размеры и форму. Деформации, которые сохраняются в теле после прекращения действия внешних сил, называются пластическими. Сила, действующая на единицу пло­щади поперечного сечения, называется на­пряжением и измеряется в паскалях. Количественной мерой, характеризую­щей степень деформации, испытываемой телом, является его относительная дефор­мация. Относительное изменение дли­ны стержня (продольная деформация) , относительное поперечное растяжение (сжатие) , где d -- диаметр стержня. Деформации e и e" всегда имеют раз­ные знаки , где m - положительный коэффициент, за­висящий от свойств материала, называе­мый коэффициентом Пуассона.

Роберт Гук экспериментально установил, что для малых деформаций относительное уд­линение e и напряжение s прямо про­порциональны друг другу: , где коэффициент пропорциональности Е называется модулем Юнга.

Модуль Юнга определяется напряжением, вызывающим относительное удлинение, равное единице . Тогда закон Гука можно записать так , где k - коэффициент упругости: удлинение стержня при упругой деформации пропорционально действующей на стержень силе. Потенциальная энергия упруго растянутого (сжатого) стержня Деформации твердых тел подчиняются закону Гука только для упругих деформаций. Связь между деформацией и напряжением пред­ставляется в виде диаграммы напряже­ний (рис. 35). Из рисунка видно, что линейная зависимость s (e), установленная Гуком, выполняется лишь в очень узких пределах до так на­зываемого предела пропорциональности (s п). При дальнейшем увеличении напря­жения деформация еще упругая (хотя за­висимость s (e) уже не линейна) и до пре­дела упругости (s у) остаточные деформа­ции не возникают. За пределом упругости в теле возникают остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекра­щения действия силы, изобразится не кри­вой ВО, а параллельной ей - CF. Напря­жение, при котором появляется заметная остаточная деформация (~=0,2 %), назы­вается пределом текучести (s т) - точка С на кривой. В области CD деформация возрастает без увеличения напряжения, т. е. тело как бы «течет». Эта область называется областью текучести (или об­ластью пластических деформаций). Мате­риалы, для которых область текучести значительна, называются вязкими, для ко­торых же она практически отсутствует - хрупкими. При дальнейшем растяжении (за точку D) происходит разрушение тела. Максимальное напряжение, возникающее в теле до разрушения, называется преде­лом прочности (s p).