Методы решения квадратных неравенств. Квадратные неравенства. Метод интервалов. Неравенства, которые сводятся к квадратным

Определение квадратного неравенства

Замечание 1

Квадратным неравенство называется т.к. переменная возведена в квадрат. Также квадратные неравенства называют неравенствами второй степени .

Пример 1

Пример .

$7x^2-18x+3 0$, $11z^2+8 \le 0$ – квадратные неравенства.

Как видно из примера, не все элементы неравенства вида $ax^2+bx+c > 0$ присутствуют.

Например, в неравенстве $\frac{5}{11} y^2+\sqrt{11} y>0$ нет свободного члена (слагаемое $с$), а в неравенстве $11z^2+8 \le 0$ нет слагаемого с коэффициентом $b$. Такие неравенства также являются квадратными, но их еще называют неполными квадратными неравенствами . Это лишь означает, что коэффициенты $b$ или $с$ равны нулю.

Методы решения квадратных неравенств

При решении квадратных неравенств используют такие основные методы:

  • графический;
  • метод интервалов;
  • выделения квадрата двучлена.

Графический способ

Замечание 2

Графический способ решения квадратных неравенств $ax^2+bx+c > 0$ (или со знаком $

Данные промежутки и являются решением квадратного неравенства .

Метод интервалов

Замечание 3

Метод интервалов решения квадратных неравенств вида $ax^2+bx+c > 0$ (знак неравенства может быть также $

Решениями квадратного неравенства со знаком $«»$ – положительные промежутки, со знаками $«≤»$ и $«≥»$ – отрицательные и положительные промежутки (соответственно), включая точки, которые отвечают нулям трехчлена.

Выделение квадрата двучлена

Метод решения квадратного неравенства выделением квадрата двучлена заключается в переходе к равносильному неравенству вида $(x-n)^2 > m$ (или со знаком $

Неравенства, которые сводятся к квадратным

Замечание 4

Зачастую при решении неравенств их нужно привести к квадратным неравенствам вида $ax^2+bx+c > 0$ (знак неравенства может быть также $ неравенствами, которые сводятся к квадратным.

Замечание 5

Самым простым способом приведения неравенств к квадратным может быть перестановка в исходном неравенстве слагаемых или перенос их, например, из правой части в левую.

Например, при переносе всех слагаемых неравенства $7x > 6-3x^2$ из правой части в левую получается квадратное неравенство вида $3x^2+7x-6 > 0$.

Если переставить в левой части неравенства $1,5y-2+5,3x^2 \ge 0$ слагаемые в порядке убывания степени переменной $у$, то это приведет к равносильному квадратному неравенству вида $5,3x^2+1,5y-2 \ge 0$.

При решении рациональных неравенств часто используют приведение их к квадратным неравенствам. При этом необходимо перенести все слагаемые в левую часть и преобразовать получившееся выражение к виду квадратного трехчлена.

Пример 2

Пример .

Привести неравенство $7 \cdot (x+0,5) \cdot x > (3+4x)^2-10x^2+10$ к квадратному.

Решение .

Перенесем все слагаемые в левую часть неравенства:

$7 \cdot (x+0,5) \cdot x-(3+4x)^2+10x^2-10 > 0$.

Используя формулы сокращенного умножения и раскрывая скобки, упростим выражение в левой части неравенства:

$7x^2+3,5x-9-24x-16x^2+10x^2-10 > 0$;

$x^2-21,5x-19 > 0$.

Ответ : $x^2-21,5x-19 > 0$.

Универсальным методом решения неравенств по праву считается метод интервалов. Именно его проще всего использовать для решения квадратных неравенств с одной переменной. В этом материале мы рассмотрим все аспекты применения метода интервалов для решения квадратных неравенств. Для облегчения усвоения материала мы рассмотрим большое количество примеров разной степени сложности.

Алгоритм применения метода интервалов

Рассмотрим алгоритм применения метода интервалов в адаптированном варианте, который пригоден для решения квадратных неравенств. Именно с таким вариантом метода интервалов знакомят учеников на уроках алгебры. Не будем усложнять задачу и мы.

Перейдем собственно к алгоритму.

У нас есть квадратный трехчлен a · x 2 + b · x + c из левой части квадратного неравенства. Находим нули из этого трехчлена.

В системе координат изображаем координатную прямую. Отмечаем на ней корни. Для удобства можем ввести разные способы обозначения точек для строгих и нестрогих неравенств. Давайте договоримся, что «пустыми» точками мы будем отмечать координаты при решении строгого неравенства, а обычными точками - нестрогого. Отметив точки, мы получаем на координатной оси несколько промежутков.

Если на первом шаге мы нашли нули, то определяем знаки значений трехчлена для каждого из полученных промежутков. Если нули мы не получили, то производим это действие для всей числовой прямой. Отмечаем промежутки знаками « + » или « - ».

Дополнительно мы будем вводить штриховку в тех случаях, когда будем решать неравенства со знаками > или ≥ и < или ≤ . В первом случае штриховка будет наноситься над промежутками, отмеченными « + », во втором над участками, отмеченными « - ».

Отметив знаки значений трехчлена и нанеся штриховку над отрезками, мы получаем геометрический образ некоторого числового множества, которое фактически является решением неравенства. Нам остается лишь записать ответ.

Остановимся подробнее на третьем шаге алгоритма, который предполагает определение знака промежутка. Существует несколько подходов определения знаков. Рассмотрим их по порядку, начав с наиболее точного, хотя и не самого быстрого. Этот метод предполагает вычисление значений трехчлена в нескольких точках полученных промежутков.

Пример 1

Для примера возьмем трехчлен x 2 + 4 · x − 5 .

Корни этого трехчлена 1 и - 5 разбивают координатную ось на три промежутка (− ∞ , − 5) , (− 5 , 1) и (1 , + ∞) .

Начнем с промежутка (1 , + ∞) . Для того, чтобы упростить себе задачу, примем х = 2 . Получаем 2 2 + 4 · 2 − 5 = 7 .

7 – положительное число. Это значит, что значения данного квадратного трехчлена на интервале (1 , + ∞) положительные и его можно обозначить знаком « + ».

Для определения знака промежутка (− 5 , 1) примем x = 0 . Имеем 0 2 + 4 · 0 − 5 = − 5 . Ставим над интервалом знак « - ».

Для промежутка (− ∞ , − 5) возьмем x = − 6 , получаем (− 6) 2 + 4 · (− 6) − 5 = 7 . Отмечаем этот интервал знаком « + ».

Намного быстрее определить знаки можно с учетом следующих фактов.

При положительном дискриминанте квадратный трехчлен с двумя корнями дает чередование знаков его значений на промежутках, на которые разбивается числовая ось корнями этого трехчлена. Это значит, что нам вовсе не обязательно определять знаки для каждого из интервалов. Достаточно провести вычисления для одного и проставить знаки для остальных, учитывая принцип чередования.

При желании, можно и вовсе обойтись без вычислений, сделав выводы о знаках по значению старшего коэффициента. Если a > 0 , то мы получаем последовательность знаков + , − , + , а если a < 0 – то − , + , − .

У квадратных трехчленов с одним корнем, когда дискриминант равен нулю, мы получаем два промежутка на координатной оси с одинаковыми знаками. Это значит, что мы определяем знак для одного из промежутков и для второго ставим такой же.

Здесь также применим метод определения знака на основе значения коэффициента a: если a > 0 , то будет + , + , а если a < 0 , то − , − .

Если квадратный трехчлен не имеет корней, то знаки его значений для всей координатной прямой совпадают как со знаком старшего коэффициента a , так и со знаком свободного члена c .

Например, если мы возьмем квадратный трехчлен − 4 · x 2 − 7 , он не имеет корней (его дискриминант отрицательный). Коэффициент при x 2 есть отрицательное число − 4 , и свободный член − 7 тоже отрицателен. Это значит, что на промежутке (− ∞ , + ∞) его значения отрицательны.

Рассмотрим примеры решения квадратных неравенств с использованием рассмотренного выше алгоритма.

Пример 2

Решите неравенство 8 · x 2 − 4 · x − 1 ≥ 0 .

Решение

Используем для решения неравенства метод интервалов. Для этого найдем корни квадратного трехчлена 8 · x 2 − 4 · x − 1 . В связи с тем, что коэффициент при х четный, нам будет удобнее вычислить не дискриминант, а четвертую часть дискриминанта: D " = (− 2) 2 − 8 · (− 1) = 12 .

Дискриминант больше нуля. Это позволяет нам найти два корня квадратного трехчлена: x 1 = 2 - 12 9 , x 1 = 1 - 3 4 и x 2 = 2 + 12 8 , x 2 = 1 + 3 4 . Отметим эти значения на числовой прямой. Так как уравнение нестрогое, то на графике мы используем обычные точки.

Теперь по методу интервалов определяем знаки трех полученных интервалов. Коэффициент при x 2 равен 8 , то есть, положителен, следовательно, последовательность знаков будет + , − , + .

Так как мы решаем неравенство со знаком ≥ , то изображаем штриховку над промежутками со знаками плюс:

Запишем аналитически числовое множество по полученному графическому изображению. Мы можем сделать это двумя способами:

Ответ: (- ∞ ; 1 - 3 4 ] ∪ [ 1 + 3 4 , + ∞) или x ≤ 1 - 3 4 , x ≥ 1 + 3 4 .

Пример 3

Выполните решение квадратного неравенства - 1 7 · x 2 + 2 · x - 7 < 0 методом интервалов.

Решение

Для начала найдем корни квадратного трехчлена из левой части неравенства:

D " = 1 2 - - 1 7 · - 7 = 0 x 0 = - 1 - 1 7 x 0 = 7

Это строгое неравенство, поэтому на графике используем «пустую» точку. С координатой 7 .

Теперь нам нужно определить знаки на полученных промежутках (− ∞ , 7) и (7 , + ∞) . Так как дискриминант квадратного трехчлена равен нулю, а старший коэффициент отрицательный, то мы проставляем знаки − , − :

Так как мы решаем неравенство со знаком < , то изображаем штриховку над интервалами со знаками минус:

В данном случае решениями являются оба промежутка (− ∞ , 7) , (7 , + ∞) .

Ответ: (− ∞ , 7) ∪ (7 , + ∞) или в другой записи x ≠ 7 .

Пример 4

Имеет ли квадратное неравенство x 2 + x + 7 < 0 решения?

Решение

Найдем корни квадратного трехчлена из левой части неравенства. Для этого найдем дискриминант: D = 1 2 − 4 · 1 · 7 = 1 − 28 = − 27 . Дискриминант меньше нуля, значит, действительных корней нет.

Графическое изображение будет иметь вид числовой прямой без отмеченных на ней точек.

Определим знак значений квадратного трехчлена. При D < 0 он совпадает со знаком коэффициента при x 2 , то есть, со знаком числа 1 , оно положительное, следовательно, имеем знак + :

Штриховку мы могли бы нанести в данном случае над промежутками со знаком « - ». Но таких промежутков у нас нет. Следовательно, чертеж сохраняет вот такой вид:

В результате вычислений мы получили пустое множество. Это значит, что данное квадратное неравенство решений не имеет.

Ответ: Нет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Квадратное неравенство – «ОТ и ДО». В этой статье мы с вами рассмотрим решение квадратных неравенств что называется до тонкостей. Изучать материал статьи рекомендую внимательно ничего не пропуская. Осилить статью сразу не получится, рекомендую сделать это за несколько подходов, информации много.

Содержание:

Вступление. Важно!


Вступление. Важно!

Квадратное неравенство – это неравенство вида:

Если взять квадратное уравнение и заменить знак равенства на любой из указанных выше, то получится квадратное неравенство. Решить неравенство - это значит ответить на вопрос, при каких значениях х данное неравенство будет верно. Примеры:

10 x 2 – 6 x +12 ≤ 0

2 x 2 + 5 x –500 > 0

– 15 x 2 – 2 x +13 > 0

8 x 2 – 15 x +45≠ 0

Квадратное неравенство может быть задано в неявном виде, например:

10 x 2 – 6 x +14 x 2 –5 x +2≤ 56

2 x 2 > 36

8 x 2 <–15 x 2 – 2 x +13

0> – 15 x 2 – 2 x +13

В этом случае необходимо выполнить алгебраические преобразования и привести его к стандартному виду (1).

*Коэффициенты могут быть и дробными и иррациональными, но в школьной программе такие примеры редкость, а в заданиях ЕГЭ не встречаются вообще. Но вы не пугайтесь, если, например, встретите:

Это тоже квадратное неравенство.

Сначала рассмотрим простой алгоритм решения, не требующий понимания того, что такое квадратичная функция и как её график выглядит на координатной плоскости относительно осей координат. Если вы способны запоминать информацию крепко и надолго, при этом регулярно подкрепляете её практикой, то алгоритм вам поможет. Так же если вам, как говорится, нужно решить такое неравенство «наразок», то алгоритм вам в помощь. Следуя ему вы без труда осуществите решение.

Если же вы учитесь в школе, то настоятельно рекомендую вам начать изучение статьи со второй части, где рассказывается весь смысл решения (смотрите ниже с пункта – ). Если будет понимание сути, то не учить, не запоминать указанный алгоритм будет не нужно, вы без труда быстро решите любое квадратное неравенство.

Конечно, следовало бы сразу начать разъяснение именно с графика квадратичной функции и oбъяснения самого смысла, но решил «построить» статью именно так.

Ещё один теоретический момент! Посмотрите формулу разложения квадратного трёхчлена на множители:

где х 1 и х 2 — корни квадратного уравнения ax 2 + bx +c=0

*Для того, чтобы решить квадратное неравенство, необходимо будет квадратный трёхчлен разложить на множители.

Представленный ниже алгоритм называют ещё методом интервалов. Он подходит для решения неравенств вида f (x )>0, f (x )<0 , f (x )≥0 и f (x )≤0 . Обратите внимание, что множителей может более двух, например:

(х–10)(х+5)(х–1)(х+104)(х+6)(х–1)<0

Алгоритм решения. Метод интервалов. Примеры.

Дано неравенство ax 2 + bx + с > 0 (знак любой).

1. Записываем квадратное уравнение ax 2 + bx + с = 0 и решаем его. Получаем х 1 и х 2 – корни квадратного уравнения.

2. Подставляем в формулу (2) коэффициент a и корни. :

a (x x 1 )(x x 2)>0

3. Определяем интервалы на числовой прямой (корни уравнения делят числовую ось на интервалы):

4. Определяем «знаки» на интервалах (+ или –) путём подстановки произвольного значения «х» из каждого полученного интервала в выражение:

a (x x 1 )(x x 2)

и отмечаем их.

5. Остаётся лишь выписать интересующие нас интервалы, они отмечены:

— знаком «+», если в неравенстве стояло «>0» или «≥0».

— знаком «–», если в неравенстве было «<0» или «≤0».

ОБРАТИТЕ ВНИМАНИЕ!!! Сами знаки в неравенстве могут быть:

строгими – это «>», «<» и нестрогими – это «≥», «≤».

Как это влияет на результат решения?

При строгих знаках неравенства границы интервала НЕ ВХОДЯТ в решение, при этом в ответе сам интервал записывается в виде (x 1 ; x 2 ) – скобки круглые.

При нестрогих знаках неравенства границы интервала ВХОДЯТ в решение, и ответ записывается в виде [x 1 ; x 2 ] – скобки квадратные.

*Это касается не только квадратных неравенств. Квадратная скобка означает, что сама граница интервала включена в решение.

На примерах вы это увидите. Давайте разберём несколько, чтобы снять все вопросы по этому поводу. В теории алгоритм может показаться несколько сложным, на самом деле всё просто.

ПРИМЕР 1: Решить x 2 – 60 x +500 ≤ 0

Решаем квадратное уравнение x 2 –60 x +500=0

D = b 2 –4 ac = (–60) 2 –4∙1∙500 = 3600–2000 = 1600

Находим корни:


Подставляем коэффициент a

x 2 –60 x +500 = (х–50)(х–10)

Записываем неравенство в виде (х–50)(х–10) ≤ 0

Корни уравнения делят числовую ось на интервалы. Покажем их на числовой прямой:

Мы получили три интервала (–∞;10), (10;50) и (50;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение (х–50)(х–10) произвольных значений их каждого полученного интервала и смотрим соответствие полученного «знака» знаку в неравенстве (х–50)(х–10) ≤ 0 :

при х=2 (х–50)(х–10) = 384 > 0 неверно

при х=20 (х–50)(х–10) = –300 < 0 верно

при х=60 (х–50)(х–10) = 500 > 0 неверно

Решением будет являться интервал .

При всех значениях х из этого интервала неравенство будет верным.

*Обратите внимание, что мы поставили квадратные скобки.

При х = 10 и х = 50 неравенство также будет верно, то есть границы входят в решение.

Ответ: x∊

Ещё раз:

— Границы интервала ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак ≤ или ≥ (нестрогое неравенство). При этом на эскизе принято полученные корни отображать ЗАШТРИШОВАННЫМ кружком.

— Границы интервала НЕ ВХОДЯТ в решение неравенства тогда, когда в условии стоит знак < или > (строгое неравенство). При этом на эскизе принято корень отображать НЕЗАШТРИХОВАННЫМ кружком.

ПРИМЕР 2: Решить x 2 + 4 x –21 > 0

Решаем квадратное уравнение x 2 + 4 x –21 = 0

D = b 2 –4 ac = 4 2 –4∙1∙(–21) =16+84 = 100

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:

x 2 + 4 x –21 = (х–3)(х+7)

Записываем неравенство в виде (х–3)(х+7) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим их на числовой прямой:

*Неравенство нестрогое, поэтому обозначения корней НЕзаштрихованы. Получили три интервала (–∞;–7), (–7;3) и (3;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение (х–3)(х+7) произвольных значений их этих интервалов и смотрим соответствие неравенству (х–3)(х+7)> 0 :

при х= –10 (–10–3)(–10 +7) = 39 > 0 верно

при х= 0 (0–3)(0 +7) = –21 < 0 неверно

при х=10 (10–3)(10 +7) = 119 > 0 верно


Решением будут являться два интервала (–∞;–7) и (3;+∞). При всех значениях х из этих интервалов неравенство будет верным.

*Обратите внимание, что мы поставили круглые скобки. При х = 3 и х = –7 неравенство будет неверным – границы не входят в решение.

Ответ: x∊(–∞;–7) U (3;+∞)

ПРИМЕР 3: Решить x 2 –9 x –20 > 0

Решаем квадратное уравнение x 2 –9 x –20 = 0.

a = –1 b = –9 c = –20

D = b 2 –4 ac = (–9) 2 –4∙(–1)∙ (–20) =81–80 = 1.

Находим корни:

Подставляем коэффициент a и корни в формулу (2), получаем:

x 2 –9 x –20 =–(х–(–5))(х–(–4))= –(х+5)(х+4)

Записываем неравенство в виде –(х+5)(х+4) > 0.

Корни уравнения делят числовую ось на интервалы. Отметим на числовой прямой:

*Неравенство строгое, поэтому обозначения корней незаштрихованы. Получили три интервала (–∞;–5), (–5; –4) и (–4;+∞).

Определяем «знаки» на интервалах, делаем это путём подстановки в выражение –(х+5)(х+4) произвольных значений их этих интервалов и смотрим соответствие неравенству –(х+5)(х+4)>0 :

при х= –10 – (–10+5)(–10 +4) = –30 < 0 неверно

при х= –4,5 – (–4,5+5)(–4,5+4) = 0,25 > 0 верно

при х= 0 – (0+5)(0 +4) = –20 < 0 неверно

Решением будут являться интервал (–5;–4). При всех значениях «х» принадлежащих ему неравенство будет верным.

*Обратите внимание, что границы не входят в решение. При х = –5 и х = –4 неравенство будет неверным.

ЗАМЕЧАНИЕ!

При решении квадратного уравнения у нас может получится один корень или корней не будет вовсе, тогда при использовании данного метода вслепую могут возникнуть затруднения в определении решения.

Небольшой итог! Метод хорош и использовать его удобно, особенно если вы знакомы с квадратичной функцией и знаете свойства её графика. Если нет, то прошу ознакомиться, приступим к следующему разделу.

Использование графика квадратичной функции. Рекомендую!

Квадратичная это функция вида:

Её графиком является парабола, ветви параболы направлены вверх, либо вниз:


График может быть расположен следующим образом: может пересекать ось х в двух точках, может касаться её в одной точке (вершиной), может не пересекать. Об этом подробнее в дальнейшем.

Теперь рассмотрим этот подход на примере. Весь процесс решения состоит из трёх этапов. Решим неравенство x 2 +2 x –8 >0.

Первый этап

Решаем уравнение x 2 +2 x –8=0.

D = b 2 –4 ac = 2 2 –4∙1∙(–8) = 4+32 = 36

Находим корни:

Получили х 1 =2 и х 2 = – 4.

Второй этап

Строим параболу у= x 2 +2 x –8 по точкам:


Точки – 4 и 2 это точки пересечения параболы и оси ох. Всё просто! Что сделали? Мы решили квадратное уравнение x 2 +2 x –8=0. Посмотрите его запись в таком виде:

0 = x 2 +2x – 8

Ноль у нас это значение «у». При у = 0, мы получаем абсциссы точек пересечения параболы с осью ох. Можно сказать, что нулевое значение «у» это есть ось ох.

Теперь посмотрите при каких значениях х выражение x 2 +2 x – 8 больше (или меньше) нуля? По графику параболы это определить несложно, как говорится, всё на виду:

1. При х < – 4 ветвь параболы лежит выше оси ох. То есть при указанных х трёхчлен x 2 +2 x –8 будет положительным.

2. При –4 < х < 2 график ниже оси ох. При этих х трёхчлен x 2 +2 x –8 будет отрицательным.

3. При х > 2 ветвь параболы лежит выше оси ох. При указанных х трёхчлен x 2 +2 x –8 будет положительным.

Третий этап

По параболе нам сразу видно, при каких х выражение x 2 +2 x –8 больше нуля, равно нулю, меньше нуля. В этом заключается суть третьего этапа решения, а именно увидеть и определить положительные и отрицательные области на рисунке. Сопоставляем полученный результат с исходным неравенством и записываем ответ. В нашем примере необходимо определить все значения х при которых выражение x 2 +2 x –8 больше нуля. Мы это сделали во втором этапе.

Остаётся записать ответ.

Ответ: x∊(–∞;–4) U (2;∞).

Подведём итог: вычислив в первом шаге корни уравнения, мы можем отметить полученные точки на оси ох (это точки пересечения параболы с осью ох). Далее схематично строим параболу и уже можем увидеть решение. Почему схематично? Математически точный график нам не нужен. Да и представьте, например, если корни получатся 10 и 1500, попробуй-ка построй точный график на листе в клетку с таким разбегом значений. Возникает вопрос! Ну получили мы корни, ну отметили их на оси ох, а зарисовать расположение самой парабола – ветвями вверх или вниз? Тут всё просто! Коэффициент при х 2 вам подскажет:

— если он больше нуля, то ветви параболы направлены вверх.

— если меньше нуля, то ветви параболы направлены вниз.

В нашем примере он равен единице, то есть положителен.

*Примечание! Если в неравенстве будет стоять знак нестрогий, то есть ≤ или ≥, то корни на числовой прямой следует заштриховать, этим условно обозначается, что сама граница интервала входит в решение неравенства. В данном случае корни не заштрихованы (выколоты), так как неравенство у нас строгое (стоит знак «>»). При чем в ответе, в данном случае, ставятся круглые скобки, а не квадратные (границы не входят в решение).

Написано много, кого-то запутал, наверное. Но если вы решите минимум 5 неравенств с использованием парабол, то восхищению вашему предела не будет. Всё просто!

Итак, кратко:

1. Записываем неравенство, приводим к стандартному.

2. Записываем квадратное уравнение и решаем его.

3. Рисуем ось ох, отмечаем полученные корни, схематично рисуем параболу, ветвями вверх, если коэффициент при х 2 положителен, или ветвями вниз, если он отрицателен.

4. Определяем визуально положительные или отрицательные области и записываем ответ по исходному неравенству.

Рассмотрим примеры.

ПРИМЕР 1: Решить x 2 –15 x +50 > 0

Первый этап.

Решаем квадратное уравнение x 2 –15 x +50=0

D = b 2 –4 ac = (–15) 2 –4∙1∙50 = 225–200 = 25

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас строгое, то заштриховывать их не будем. Схематично строим параболу, расположена она ветвями вверх, так как коэффициент при х 2 положительный:

Третий этап.

Определяем визуально положительные и отрицательные области, здесь мы их отметили разными цветами для наглядности, можно этого и не делать.

Записываем ответ.

Ответ: x∊(–∞;5) U (10;∞).

*Знак U обозначает объёдинение решение. Образно можно выразиться так, решением является «этот» И « ещё этот» интервал.

ПРИМЕР 2: Решить x 2 + x +20 ≤ 0

Первый этап.

Решаем квадратное уравнение x 2 + x +20=0

D = b 2 –4 ac = 1 2 –4∙(–1)∙20 = 1+80 = 81

Находим корни:

Второй этап.

Строим ось ох. Отмечем полученные корни. Так как неравенство у нас нестрогое, то заштрихуем обозначения корней. Схематично строим параболу, расположена она ветвями вниз, так как коэффициент при х 2 отрицательный (он равен –1):

Третий этап.

Определяем визуально положительные и отрицательные области. Сопоставляем с исходным неравенством (знак у нас ≤ 0). Неравенство будет верно при х ≤ – 4 и х ≥ 5.

Записываем ответ.

Ответ: x∊(–∞;–4] U \cup $ $((x_1,x_2))$
С другой стороны, если $a 0)$, тогда множество решений это:
$$ $((x_1,x_2))$
А если имеем $ax^2+bx+c \leq 0 (ax^2+bx+c $(-\infty, x_1] \cup \cup }