Химические элементы в военном деле

МЕТАЛЛЫ В ВОЕННОМ ДЕЛЕ

Преподаватель химии Бессуднова Ю.В.

Медь, №29 . В годы Великой Отечественной войны главным потребителем меди была военная промышленность. Сплав меди (90%) и олова (10%) – пушечный металл. Гильзы патронов и артиллерийских снарядов обычно желтого цвета. Они сделаны из латуни – сплава меди (68%) с цинком (32 %). Большинство артиллерийских латунных гильз используется неоднократно. В годы войны в любом артиллерийском дивизионе был человек (обычно офицер), ответственный за своевременный сбор стреляных гильз и отправку их на перезарядку. Высокая стойкость против разъедающего действия соленой воды характерна для морских латуней. Это латуни с добавкой олова.

Молибден, № 42 . Молибден называют “военным” металлом, так как 90% его используется на военные нужды. Стали с добавкой молибдена (и других микродобавок) очень прочны, из них готовят стволы орудий, винтовок, ружей, детали самолетов, автомобили. Введение молибдена в состав сталей в сочетании с хромом или вольфрамом необычайно повышает их твердость (танковая броня ).

Серебро, № 47. Серебро в сплавах с индием использовалось для изготовления прожекторов (для противовоздушной обороны). Зеркала прожекторов в годы войны помогали обнаружить врага в воздухе, на море и на суше; иногда с помощью прожекторов решались тактические и стратегические задачи. Так, при штурме Берлина войсками Первого Белорусского фронта 143 прожектора огромной светосилы ослепили гитлеровцев в их оборонительной полосе, и это способствовало быстрому исходу операции.

Алюминий, № 13. Алюминий называют “крылатым” металлом, так как его сплавы с Mg, Mn, Be, Na, Si используются в самолетостроении. Тончайший алюминиевый порошок использовался для получения горючих и взрывчатых смесей. Начинка зажигательных бомб состояла из смеси порошков алюминия, магния и оксида железа, детонатором служила гремучая ртуть. При ударе бомбы о крышу срабатывал детонатор, воспламеняющий зажигательный состав, и все вокруг начинало гореть. Горящий зажигательный состав нельзя потушить водой, так как раскаленный магний реагирует с ней. Поэтому для тушения огня применяли песок.

Титан обладает уникальными свойствами: почти вдвое легче железа, всего лишь в полтора раза тяжелее алюминия. При этом он превосходит в полтора раза сталь по прочности и плавится при более высокой температуре, обладает высокой коррозийной стойкостью. Идеальный металл для реактивных самолетов.

Магний, № 12. Свойство магния гореть белым ослепительным пламенем широко используется в военной технике для изготовления осветительных и сигнальных ракет, трассирующих пуль и снарядов, зажигательных бомб. Металлурги используют магний для раскисления стали и сплавов.

Никель, № 28. Когда советские танки Т-34 появились на полях сражений, немецкие специалисты были поражены неуязвимостью их брони. По приказу из Берлина первый же захваченный Т-34 был доставлен в Германию. Здесь за него взялись химики. Они установили: русская броня содержит большой процент никеля, что делает ее сверхпрочной. Три качества этой машины - мощность огня, скорость, прочность брони - должны были так сочетаться, чтобы ни одно из них не приносилось в жертву другим. Нашим конструкторам во главе с М. И. Кошкиным удалось создать лучший танк периодаВторой мировой войны. Башня танка поворачивалась с рекордной скоростью: она делала полный оборот за 10с вместо обычных 35с. Благодаря небольшому весу и размеру танк был оченьманевренный. Броня с повышенным содержанием никеля не только оказалась самой прочной, но и имела самые выгодные углы наклона, поэтому была неуязвимой.

Ванадий, № 23 . Ванадий называют “автомобильным” металлом. Ванадиевая сталь дала возможность облегчить автомобили, сделать новые машины прочнее, улучшить их ходовые качества. Из этой стали изготовляют солдатские каски, шлемы, броневые плиты на пушках. Хромованадиевая сталь еще прочнее. Поэтому ее стали применять широко в военной технике: для изготовления коленчатых валов корабельных двигателей, отдельных деталей торпед, авиамоторов, бронебойных снарядов.

Литий, № 3. В годы Великой Отечественной войны гидрид лития стал стратегическим. Он бурно реагирует с водой, при этом выделяется большой объем водорода, которым заполняют аэростаты и спасательное снаряжение при авариях самолетов и судов в открытом море. Добавка гидроксида лития в щелочные аккумуляторы увеличивала срок их службы в 2-3 раза, что очень нужно было для партизанских отрядов. Трассирующие пули с добавкой лития при полете оставляли сине-зеленый свет. Вольфрам, № 74. Вольфрам относится к числу самых ценных стратегических материалов. Из вольфрамовых сталей и сплавов изготавливают танковую броню, оболочку торпед и снарядов, наиболее важные детали самолетов и двигатели.

Свинец, № 82. С изобретением огнестрельного оружия на изготовление пуль для ружей, пистолетов и картечи для артиллерии стали расходовать много свинца. Свинец – тяжелый металл, у него высокая плотность. Именно это обстоятельство послужило причиной массового использования свинца в огнестрельном оружии. Свинцовыми метательными снарядами пользовались еще в древности: пращники армии Ганнибала метали в римлян свинцовые шары. И сейчас пули отливают из свинца, лишь оболочку их делают из других, более твердых металлов.

Кобальт, № 27. Кобальт называют металлом чудесных сплавов (жаропрочных, быстрорежущих). Кобальтовая сталь использовалась для изготовления магнитных мин.

Лантан, № 57. Во время второй мировой войны лантановые стекла применяли в полевых оптических приборах. Сплав лантана, церия и железа дает так называемый “кремень”, который использовался в солдатских зажигалках. Из него же изготовляли специальные артиллерийские снаряды, которые во время полета при трении о воздух искрят

Тантал, № 73. Специалисты по военной технике считают, что из тантала целесообразно изготовлять некоторые детали управляемых снарядов и реактивных двигателей. Тантал – важнейший стратегический металл для изготовления радарных установок, передаточных радиостанций; металл восстановительной хирургии.



  • 1. Применение металлов в военном деле
  • 2. Применение неметаллов в военном деле

НЕМЕТАЛЛЫ



Колоссальная масса железа истрачена во все войны

Только за Первую мировую войну было израсходовано 200 млн тонн стали, за Вторую мировую войну – примерно 800 млн тонн

Сплавы железа в виде броневых плит и листья толщиной 10-100 мм используются при изготовлении корпусов и башен танков, бронеавтомобилей и в другой военной технике

Толщина брони военных кораблей и береговых орудий

достигает 500 мм


В тринадцатой квартире

Живу, известный в мире

Как проводник прекрасный.

Пластичен, серебрист.

Еще по части сплавов

Завоевал я славу,

И в этом деле я – специалист.

Вот мчусь я, словно ветер,

В космической ракете.

Спускаюсь в бездну моря,

Там знают все меня.

По внешности я видный,

Хоть пленкою оксидной

Покрыт, она мне - прочная броня




А я – металл космического века,

Недавно стал на службу человеку,

Хоть в технике я молодой метал,

Но славу я себе завоевал.

Я жаропрочен и теплопроводен,

И в атомных реакторах пригоден,

А в сплавах с алюминием, титаном,

Я нужен как горючее ракет,

По легкости мне в сплавах равных нет


Я – магний легкий и активный,

И в технике незаменимый:

Во многих моторах найдете детали,

Для осветительных ракет

Другого элемента нет!


Сплав меди и цинка – латунь – хорошо обрабатывается давлением и имеет высокую вязкость

Она используется для изготовления гильз патронов и артиллерийских снарядов, так как обладает хорошей сопротивляемостью ударным нагрузкам создаваемым пороховыми газами


Титан используется в производстве турбореактивных двигателей, в космической технике, артиллерии, судостроении, машиностроении, атомной и химической промышленности

Из титановых сплавов готовят несущие винты современных тяжелых вертолетов, рули поворота и другие ответственные детали сверхзвуковых самолетов


А я – гигант, зовусь титан.

Винты вертолетов,

Рули поворота

И даже детали сверхзвуковых самолетов

Изготавливают из меня

Для этого и нужен я!





В гелиевой защитной среде проходят отдельные стадии получения ядерного горючего

В контейнерах, заполненных гелием, хранят и транспортируют тепловыделяющие элементы ядерных реакций


Неоново-гелиевой смесью заполняют газосветные лампы, незаменимые для сигнальных устройств

При температуре жидкого неона хранят ракетное топливо


Широкое применение находят полимерные металлы при возведении полевых и защитных сооружений, строительстве дорог, взлетно-посадочных полос, переправ через водные преграды

Из пластмассы тефлон прессуют многие важнейшие детали самолетов, машин, станков


Химические волокна, в составе которых имеется углерод, идут на изготовление прочного авто- и авиакорда

Без продукции резиновой и шинной промышленности остановились бы автомобили, перестали бы работать электродвигатели, компрессоры, насосы и, конечно, не летали бы самолеты


«История химии» - М 6. Образование тумана. Н 8. Фотосинтез. П 9. Испарение жидкой ртути. Д.И. Менделеев. Цель: знакомство с физическими и химическими явлениями, историей развития химии. Агрикола горное дело. Я 11.Образование ржавчины на гвозде. И 10.Подгорание пищи на перегретой сковороде. А.М. Бутлеров. Е 7. Почернение серебряных изделий.

«История химии как науки» - Аррениус. Больцман. Бор. Бойль. Новые методы исследования. Достижения алхимии. Великие ученые – химики. Органическая химия. Атомная теория. Пневматическая химия. Бертло. Бекетов. Авогадро. Промышленная химия. Биохимия. Техническая химия. Алхимия. Берцелиус. Ятрохимия. Структурная химия. Греческая натурфилософия.

«Начало химии» - Покорение огня. Шумеры. Производство керамики. Фармакопея. Источники знаний. Предалхимический период в истории химии. Глина. Найдены два папируса. Сок растения. Происхождение слова «химия». Папирус Эберса. Множество химических ремесел.

«Стихи о химии» - Если здесь метилбурат. В беге жизни и забот Ваш « безжизненный» азот! Клянемся мы – решать задачи! Высший класс – дешевое, простое. Не угаснет на оксиды, поверьте, спрос, Ведь лучшего класса в мире нет! Спичку взяли только в руки, И засиял огонь в момент. Ну конечно не со всеми, Чаще в виде удобрений.

«Михаил Кучеров» - Общий вклад в развитие химии. Реакция Кучерова позволила получать уксусную кислоту в промышленных масштабах. Кучеров Михаил Григорьевич. Цели нашей работы. Данное свойство было использовано Кучеровым для присоединения воды к ацетиленам. В лабораторных исследованиях реакция Кучерова используется по сегодняшний день.

«Вклад Ломоносова в химию» - Химия. Закон сохранения вещества. Вклад Ломоносова. Подробный проект. Ломоносов провел серию опытов. Ломоносов. Истинный химик. М.В. Ломоносов. Широкая программа физико-химических опытов. Стол химика. Закон сохранения массы.

Всего в теме 31 презентация

ВОЕННО-ХИМИЧЕСКОЕ ДЕЛО , область военной деятельности, обнимающая вопросы: 1) применения на войне боевых химических веществ, 2) защиты от них, осуществляемой как в индивидуальном, так и в коллективном порядке, и 3) подготовки к химической борьбе.

I. Применение боевых химических веществ . Для боевых целей служат отравляющие, дымообразующие и зажигательные вещества; все они действуют непосредственно и являются т. о. основной действующей частью химического оружия.

Из отравляющих веществ важное военное значение имеют хлор (Сl 2), фосген (СО∙Сl 2), дифосген (Сl∙СO∙O∙С∙Сl 3), иприт , арсины (CH 3 ∙AsCl 2 ; C 2 H 5 ∙ASCl 2 ; (C 6 H 5) 2 AsCl; ClAs(C 6 H 4) 2 NH; AS(CH:CHCl)Cl 2 и другие], хлорацетофенон (Сl∙СН 2 ∙СО∙С 6 Н 5), хлорпикрин (C∙Cl 3 ∙NO 3) и некоторые другие. В зависимости от своих физических и химических свойств все отравляющие вещества обычно делятся на стойкие (долговременного действия) и нестойкие (кратковременного действия). Для целей химического нападения отравляющие вещества могут быть применены следующими способами.

А. Специальные способы применения отравляющих веществ . 1) Газовые баллоны . Газобаллонные атаки являются первым серьезным способом массового применения отравляющих веществ. Для создания газовых волн, направляемых по ветру на неприятеля, служит смесь хлора с фосгеном (80% и 20%), выпускаемая из специальных стальных баллонов (см. Арматура газовая), где эта смесь находится в сжиженном состоянии под давлением. Боевые нормы применения: 1000-1200 кг смеси на 1 км фронта в 1 минуту при силе ветра в 2-3 м/сек. Для вычисления количества боевой смеси, потребной для производства газобаллонной атаки, употребляется формула: а = б∙в∙г, где а - искомое количество нужной боевой смеси, б - боевая норма в кг/км в 1 минуту, в - продолжительность выпуска и г - длина фронта. 2) Ядовитые свечи - металлические цилиндры разных величин (начиная от 0,5 л), снаряженные смесью горючего с твердыми раздражающими отравляющими веществами (по преимуществу арсинами). При горении арсины возгоняются и дают ядовитый дым, трудно задерживаемый противогазами. Этот способ еще не применялся в прошлой войне, но в будущей войне с ним, вероятно, придется встретиться. 3) Газометы - стальные трубы весом 80-100 кг каждая, служащие для выбрасывания снарядов весом в 25-30 кг. Эти снаряды (мины) могут наполняться отравляющими веществами до 50%. Газометы применяются для создания облака высокой концентрации в целях внезапного нападения. 4) Заражающие приборы - состоят из переносных или перевозимых резервуаров, снаряженных стойкими отравляющими веществами (иприт), и употребляются для заражения почвы. В прошлой войне такие приборы не применялись. 5) Огнеметы - резервуары, из которых давлением сжатого воздуха выбрасывается горящая струя жидкости; для огнеметов употребляются смеси различных погонов нефти и другие горючие масла; дальность действия огнеметов - 25-50 м и более в зависимости от системы; применяются они главным образом при обороне.

Б. Применение отравляющих веществ артиллерией и авиацией . 1) Артиллерийские химические снаряды бывают двух основных типов: а) химические и б) осколочно-химические. Первые снаряжены главным образом отравляющими веществами, взрывчатыми же веществами - лишь настолько, чтобы раскрыть снаряды. Вторые имеют значительный заряд взрывчатого вещества и обладают осколочным действием. Обычно в таких снарядах заряд взрывчатого вещества составляет 40-60% по весу от заряда отравляющего вещества. В зависимости от характера отравляющего вещества, которым снаряжены снаряды, они разделяются на снаряды кратковременного и долговременного действия. В германской артиллерии были приняты боевые нормы применения артиллерийских химических снарядов, указанные в табл. 1.

Норма расхода осколочно-химических снарядов равнялась примерно 1/6-1/3 количества расходуемых обычных химических снарядов. Для снарядов долговременного действия применялась та же норма, что и для снарядов кратковременного действия; в этом случае время обстрела может быть значительно большим. 2) Авиация в прошлой войне не применяла отравляющие вещества. В настоящее время во всех армиях ведутся усиленные приготовления к использованию авиации для этих целей. Авиация может действовать при помощи отравляющих веществ, как на фронте, так и в тылу, против населенных центров. В виду этого в настоящее время выдвинута проблема противохимической защиты мирного населения. Авиация может применять при своих атаках: а) бомбы разного калибра, снаряженные стойкими и нестойкими отравляющими веществами; б) ядовитые жидкости - для непосредственного выливания; одним из отравляющих веществ, которое по своим физико-химическим и токсическим свойствам наиболее подходит для широкого применения при аэрохимических атаках, является иприт; в) зажигательные вещества , применяемые в артиллерийских снарядах и бомбах гл. обр. для того, чтобы вызывать пожары; обычно они снаряжены термитом (смесь алюминия и окиси железа); г) дымообразующие вещества , употребляемые для целей ослепления противника и маскировки собственных действий; наиболее употребительными являются фосфор, серный ангидрид, хлорсульфоновая кислота и хлорное олово; этими веществами могут снаряжаться артиллерийские снаряды и бомбы; могут применяться также и специальные дымные приборы и дымные шашки.

II. Защита от отравляющих веществ . Для этой цели применяются по преимуществу фильтрующие противогазы; они обычно состоят из трех частей: 1) лицевой, включающей маску, прикрывающую глаза и дыхательные пути, 2) поглотительной коробки и 3) соединительной трубки. Наиболее ответственной частью противогаза является поглотительная коробка. Ее поглотительная способность основана на действии активированного угля , химического поглотителя и противодымного фильтра. Активированный уголь представляет собой обычный древесный уголь, получаемый из твердых пород дерева или из фруктовых косточек. Его пористость, а вместе с ней адсорбционная способность искусственно увеличиваются разными способами, из которых наиболее употребительным является действие перегретого пара при 800-900°. Активность угля обычно измеряется его способностью поглощать хлор. Средние активированные угли поглощают 40-45% по весу хлора. Но одного только активированного угля недостаточно для полного поглощения всех отравляющих веществ в паро- и газообразном состоянии. Для окончательного поглощения отравляющих веществ (например, продуктов их гидролиза в угле) употребляется химический поглотитель. Он состоит из смеси извести, едкой щелочи, цемента и инфузорной земли (или пемзы) в определенных пропорциях. Вся смесь орошается крепким раствором перманганата калия или натрия. Однако ни последний, ни химический поглотитель не задерживают в достаточной мере ядовитые дымы. Для защиты от них в поглотительную коробку вводятся противодымные фильтры, состоящие обычно из различных волокнистых веществ (разные сорта целлюлозы, вата , войлок и пр.). В настоящее время во всех армиях усиленно работают над усовершенствованием противогазов, стремясь сделать их наиболее мощными, универсальными, легкими по дыханию, удобоносимыми и приспособленными к каждому роду оружия, дешевыми и легко изготовляющимися. Помимо фильтрующих употребляются, хотя и в гораздо меньшей мере, изолирующие противогазы. Они представляют собой прибор, в котором из специального баллончика подается кислород для дыхания. Этот прибор совершенно изолирует человека от окружающего воздуха; т. о. его универсальность в отношении отравляющих веществ максимальная. Однако, благодаря своей громоздкости, дороговизне, сложности и непродолжительности действия, он не может еще конкурировать с фильтрующим противогазом; последний остается основным средством защиты от отравляющих веществ. Для защиты от отравляющих веществ, действующих на кожу (нарывных), употребляются специальные защитные одежды, изготовляемые из ткани, пропитанной олифой или другими составами. Помимо средств индивидуальной защиты, какими являются фильтрующие противогазы, массовое применение отравляющих веществ выдвинуло также необходимость коллективной защиты. К средствам защиты этого рода относятся различные противохимически оборудованные помещения, начиная от полевых убежищ и кончая жилыми зданиями. Для этой цели воздух, попадающий в такое помещение (газоубежище), пропускают предварительно через поглотительный фильтр, имеющий размеры, соответствующие помещению.

I II. Подготовка к военно-химической борьбе охватывает вопросы: 1) производства всех средств, необходимых для ведения химической борьбы, и снабжения ими войск и гражданского населения, 2) подготовки к химической борьбе всего личного состава армии и гражданского населения и принятия подготовительных мер по химической обороне различных пунктов страны и 3) научно-исследовательской работы по изысканию новых или усовершенствованию старых средств и способов химической борьбы. Возможность ведения химической борьбы, ее глубина и размах определяются состоянием в данной стране ее химической промышленности. Последняя в настоящее время, как показывает табл. 2, развивается как раз в направлениях, нужных для широкого производства и применения отравляющих веществ.

Стремительный, все увеличивающийся рост химической промышленности, несомненно, вызовет широкое применение на войне различных химических веществ, имеющих боевое значение. Широко ведущаяся во всех странах в различных специальных научных институтах научно-исследовательская работа придаст массовому применению боевых химических веществ наиболее рациональные с военной точки зрения формы. В будущей войне военно-химическое дело будет занимать одно из важнейших мест.

МБОУ лицей № 104 г. Минеральные Воды. «Роль металлов в Победе » . 70 - летию Победы посвящается… работа ученика 8 в класса Михайлова Ивана. 2015 год


Актуальность данного исследования состоит в том, что реальных участников событий Великой Отечественной войны почти не осталось в жизни, наши ровесники знают о войне лишь из книг и кинофильмов. Но память человеческая несовершенна, многие события забываются. Мы должны знать реальных людей, которые приближали победу и подарили нам будущее. Работая над проектом, из книг, энциклопедий, газетных и журнальных статей мы узнавали все новые факты о вкладе науки в Победу. Об этом надо рассказывать, этот материал надо приумножать и хранить, чтобы люди знали и помнили, кому мы обязаны годами мирной жизни без войны, кто спас мир от чумы фашизма.


Эпиграф. «Нам руки даны, чтобы землю обнять И сердцем ее отогреть. Нам память дана, чтобы павших поднять И вечную славу им петь, Осколком снаряда береза пробита, И буквы легли на гранит... Ничто не забыто, ничто не забыто, Никто не забыт!


Гипотеза.

Какова роль металлов в Великой Отечественной войне?


  • Узнать о вкладе ученых- химиков в дело великой Победы над фашистс- кой Германией.
  • Получить информацию о новых, неизвестных ранее фактах о применении свойств некоторых металлов.

Задачи проекта. - проследить, какую же роль сыграли элементы-металлы на войне; -узнать, что сделали ученые-химики для великой Победы. Обратить внимание на их стойкость, мужество, самоотверженность, оценить их вклад в дело Победы над врагом; -реализовать связь между химией, историей и литературой; - воспитывать в учащихся чувство патриотизма, преданности и любви к своей Родине, уважительное отношение к ветеранам войны и тыла, способствовать воспитанию чувства гордости за самоотверженный труд учёных в годы войны, показать и подтвердить значение химических знаний для жизни.




«Я не вижу моего врага- немца-конструктора, который сидит над

своими чертежами... в глубоком убежище.

Но, не видя его, я воюю с ним... Я знаю, что бы ни придумал немец, я обязан придумать лучше.

Я собираю всю мою волю и фантазию,

все мои знания и опыт... чтобы в день, когда два новых самолета - наш и вражеский - столкнутся в военном небе, наш оказался победителем»

Лавочкин С.А., авиаконструктор


Необходимо было своими знаниями создать лучшие танки, самолеты, чтобы скорее освободить все народы от нашествия гитлеровской банды, чтобы снова наука могла спокойно заниматься своим мирным трудом, чтобы она могла поставить на службу человечеству всю сумму природных богатств, положить всю менделеевскую таблицу к ногам освобожденного и радостного человечества”. Ферсман А.Е., академик



Арбузов Александр Ерминингельдович

Он изготовил препарат – 3,6 диаминофталимид, обладающий флуоресцентной способностью. Этот препарат был использован при изготовлении оптики для танков.


Китайгородский Исаак Ильич

Создал бронестекло, которое в 25 раз прочнее обычного стекла.


Фаворский Алексей Евграфович

Он изучил химические свойства и превращения

вещества – ацетилена. Разработал важнейший метод получения виниловых эфиров, используемых в оборонительной промышленности


Ферсман Александр Евгеньевич

Он выполнял специальные работы по военно-инженерной геологии, военной географии, по вопросам стратегического сырья, маскировочных красок.





Когда советские танки Т-34 появились на полях сражений, немецкие специалисты были поражены неуязвимостью их брони, которая содержала большой процент никеля и делала её

сверхпрочной



Алюминий называют «крылатым» металлом.

Алюминий использовали для защиты самолетов, так как радиолокационные станции не улавливали сигналы от приближающихся самолетов. Помехи были вызваны лентами из алюминиевой фольги, при налётах на Германию было сброшено примерно 20 тыс. тонн алюминиевой фольги.






Трассирующие пули с добавкой лития при полете оставляли сине-зеленый свет.

Соединения лития используются на подводных лодках для очистки воздуха.



Колоссальная масса железа истрачена на земном шаре в ходе войн. За Вторую Мировую - примерно 800 млн. тонн.

Более 90% всех металлов, которые использовались в Великой Отечественной Войне, приходится на железо.


Для изготовления брони танков и пушек применялась сталь (сплав железа, вольфрама с углеродом до 2% и другими элементами)

Нет такого элемента, при участии которого проливалось бы так много крови, терялось бы столько жизней, происходило бы столько несчастий.



Сплавы железа в виде броневых плит и литья толщиной 10-100 мм использовались

при изготовлении корпусов и башен танков, бронепоездов


Страшное железо

далекой войны







Зажигательная бомба








танковая броня

винтовка










Ванадий называют «автомобильным» металлом. Ванадиевая сталь дала возможность облегчить автомобили, сделать новые машины прочнее, улучшить их ходовые качества. Из этой стали изготавливают солдатские каски, шлемы, броневые плиты на пушках.








Название этой болезни – оловянная чума. Солдатские пуговицы нельзя хранить на морозе. Хлорид олова ( IV ) – жидкость, использовалась для образования дымовых завес.






Без германия не было бы

радио-локаторов



Кобальт называют металлом чудесных сплавов(жаропрочных, быстрорежущих)

Кобальтовая сталь использовалась для изготовления магнитных мин



Специалисты по военной технике считают, что из тантала целесообразно изготовлять некоторые детали управляемых снарядов и реактивных двигателей.

Первоначально тантал использовался для изготовления проволоки для ламп накаливания.





  • Исходя из полученной информации, можно сделать следующие выводы:
  • Роль металлов в Победе в ВОВ очень велика.
  • Только ум, находчивость, самоотверженный труд наших ученых-химиков позволили металлам в полной мере проявить свои свойства и тем самым приблизить долгожданную Победу.
  • Хотелось бы надеяться, что мощь этой прекрасной науки – химии – будет направлена не на создание новых видов оружия, не на разработку новых отравляющих веществ, а на решение глобальных общечеловеческих проблем.

Кто про химика сказал: “Мало воевал”, Кто сказал: “Он мало крови проливал?” Я в свидетели зову химиков–друзей, Тех, кто смело бил врага до последних дней, Тех, кто с армией родной шел в одном строю, Тех, кто грудью защитил Родину мою. Сколько пройдено дорог, фронтовых путей… Сколько полегло на них молодых парней… Не померкнет никогда память о войне, Слава химикам живым, павшим - честь вдвойне. Старший преподаватель ДХТИ, бывший фронтовик З.И. Барсуков


  • Богданова Н.А. Из опыта работы металлов главных подгрупп. //Химия в школе. – 2002. - №2.– С. 44 – 46.
  • Габриелян О.С. Настольная книга учителя химии. 9 класс. – М.: Блик и К0, 2001. – 397 с.
  • Габриелян О.С., Лысова Г.Г. методическое пособие. Химия 11 класс. – М.: Дрофа, 2003. – 156 с.
  • Евстифеева А.Г., Шевченко О.Б., Курень С.Г. Дидактический материал к урокам химии. - Ростов-на- Дону.: Феникс, 2004. – 348 с.
  • Егоров А.С., Иванченко Н.М., Шацкая К.П. Химия внутри нас. – Ростов-на- Дону.: Феникс, 2004. – 180 с.
  • Интернет-ресурсы
  • Колтун М. Мир химии. – М.: Детская литература, 1988. – 303 с.
  • Ксенофонтова И.Н. Модульная технология: изучаем металлы. //Химия в школе. – 2002. - №2.- С. 37 – 42.
  • Кузьменко Н.Е., Еремин В.В., Попков В.А. Начала химии. – М.: Экзамен, оникс 21 век, 2001.– 719 с.
  • Курдюмов Г.М. 1234 вопроса по химии. – М.: Мир, 2004. – 191 с.
  • Ледовская Е.М. Металлы в организме человека. //Химия в школе. – 2005. - №3.– С. 44 – 47.
  • Пинюкова А.Г. Независимое расследование по теме «Щелочные металлы». //Химия в школе.– 2002. - №1. – С. 25 – 30.
  • Сгибнева Е.П., Скачков А.В. Современные открытые уроки химии. 8- 9 классы. – Ростов-на-Дону: Феникс, 2002. – 318 с.
  • Шиленкова Ю.В., Шиленков Р.В. Модуль: строение атомов, физические и химические свойства, применение щелочных металлов. //Химия в школе. – 2002. - №2. – С. 42 – 44 .


Ветераны уйдут. Как их нам не забыть?

Как суметь уберечь нам их в сердце с тобою?

Или всё, что досталось такою ценой,

Будет нами распродано, будет забыто…

Юрий Стародубцев


Мне кажется порою, что солдаты,

С кровавых не пришедшие полей,

Не в землю эту полегли когда-то,

А превратились в белых журавлей.

Они до сей поры с времен тех дальних

Не потому ль так часто и печально

Мы замолкаем, глядя в небеса?

Расул Гамзатов