Упругие и неупругие соударения. Законы сохранения энергии и импульса. Упругие и неупругие столкновения Упругое столкновение шаров

Проиллюстрируем применение законов сохранения импульса и энергии на примере удара тел.

Удар (или соударение) – это столкновение двух или более тел, при котором взаимодействие длится очень короткое время.

При ударе в телах возникают значительные внутренние силы, поэтому внешними силами, действующими на них, можно пренебречь и рассматривать соударяющиеся тела как замкнутую систему, применяя к ней законы сохранения.

Во время удара тела деформируются и кинетическая энергия относительного движения соударяющихся тел преобразуется в энергию упругой деформации. Во время удара происходит перераспределение энергии между соударяющимися телами, но относительная скорость тел после удара не достигает своего прежнего значения (нет идеально упругих тел и идеально гладких поверхностей). Отношение нормальных составляющих относительной скорости тел после и до удара называется коэффициентом восстановления :

Если , то тела называют абсолютно неупругими, если – абсолютно упругими. Для большинства реальных тел . Например, для шаров из слоновой кости , для медных шаров , для свинцовых .

Прямая, проходящая через точку соприкосновения тел перпендикулярно к поверхности их соприкосновения, называется линией удара .


Удар называют центральным , если тела до удара движутся вдоль прямой, проходящей через их центры масс.

Абсолютно упругий центральный удар – столкновение двух тел, в результате которого во взаимодействующих телах не остается деформаций, а вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию.

В этом случае выполняются закон сохранения импульса и закон сохранения кинетической энергии. Пусть шары массами и имели до удара скорости и соответственно. После удара их скорости стали и . Направления скоростей до удара показаны на рис. 3.4.1, после удара – на рис. 3.4.2. Запишем закон сохранения импульса (в проекции на ось Ох ) и закон сохранения кинетической энергии:

Произведем преобразование

Откуда: , и .

Проанализируем эти формулы.

1. Пусть . Тогда и . Следовательно, при ударе шаров с равной массой они «обмениваются» скоростями.

2. Пусть (второй шар покоится). Тогда .

а) Если , то и . Следовательно, первый шар после удара остановится, а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался до удара первый шар.

б) Если , то и . Следовательно, первый шар будет двигаться после удара в прежнем направлении, но с меньшей скоростью. Скорость второго шара после удара будет больше, чем первого шара, и он будет двигаться в том же направлении, в котором двигался до удара первый шар.



в) Если , то по модулю и проекция на направление оси отрицательна. Следовательно, направление движения первого шара изменится – он отскакивает обратно. Скорость второго шара после удара будет меньше, чем первого, и он будет двигаться в том же направлении, в котором двигался до удара первый шар.

г) Если (столкновение шара со стеной), то и .

Следовательно, первый шар упруго отскакивает от стены и меняет направление своего движения на противоположное.

Абсолютно неупругий центральный удар – столкновение двух тел, в результате которого тела начинают двигаться как единое целое.

Пусть шары массами и имели до неупругого удара скорости и соответственно. После удара они стали двигаться как одно целое со скоростью . Направления скоростей до удара показаны на рис. 3.4.3, после удара – на рис. 3.4.4. При

абсолютно неупругом ударе выполняется только закон сохранения импульса:

Спроецируем это векторное уравнение на ось : , откуда

Если шары двигались навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар с большим импульсом.

В частном случае, если , то .

Закон сохранения кинетической энергии не выполняется, т.к. в процессе взаимодействия шаров между ними действуют силы, зависящие от скорости движения (этим они похожи на силы сопротивления), являющиеся диссипативными. Часть кинетической энергии переходит во внутреннюю. «Потеря» кинетической энергии

вследствие деформации равна: . Подставляя найденное значение , получим .

Проанализируем полученные формулы.

1. Если второе тело покоилось , то скорость шаров после удара . Во внутреннюю энергию переходит энергия .

2. Если (молот и наковальня), то , поэтому вся кинетическая энергия молота переходит в энергию деформаций куска металла (поковки), лежащей между молотом и наковальней.

3. Если (молоток и гвоздь), то и практически вся кинетическая энергия молотка затрачивается на перемещение гвоздя, а не на его деформацию.

Пример 3.4.1. Шар массой , движущийся горизонтально с некоторой скоростью , столкнулся с неподвижным шаром массы . Шары абсолютно упругие, удар прямой. Какую долю своей кинетической энергии первый шар передал второму?

Дано: Решение:

Сделаем чертеж. Укажем направление скорости первого шара до удара (рис. 3.4.5) и возможные направления скоростей шаров после удара (рис. 3.4.6) (если направление выбрано неверно, то скорость получится со знаком « – »).

Доля энергии, переданной первым шаром второму: , где кинетическая энергия первого шара до удара; , скорость и кинетическая энергия второго шара после удара.

Для нахождения воспользуемся тем, что при абсолютно упругом ударе одновременно выполняются законы сохранения импульса (закон сохранения импульса записан в проекции на ось Ох) и

кинетической энергии: .

Решая совместно эти уравнения, найдем , следовательно, .

Таким образом, доля переданной энергии зависит только от масс сталкивающихся шаров и не изменится, если шары поменяются местами.

Ответ: .

Пример 3.4.2. Два шара массами и движутся навстречу друг другу со скоростями и . Удар неупругий. Определить: 1) скорость шаров после удара; 2) долю кинетической энергии шаров, превратившуюся во внутреннюю энергию.

Дано: Решение:

Сделаем чертеж. Укажем направление скоростей шаров до удара (рис. 3.4.7) и после удара (рис. 3.4.8). Выполняется только закон сохранения импульса . Спроецируем векторное уравнение на ось Ох: . Следовательно, скорость шаров после неупругого удара равна . Кинетическая энергия шаров до удара , после удара .

В результате неупругого удара шаров их кинетическая энергия уменьшается, за счет чего увеличивается их внутренняя энергия.

Долю кинетической энергии, пошедшей на увеличение их внутренней энергии, определим из соотношения .

Ответ: , .

Пример 3.4.3. Молот массой падает на поковку, масса которой вместе с наковальней . Скорость молота в момент удара равна . Найти: а) кинетическую энергию молота в момент удара ; б) энергию, переданную фундаменту ; в) энергию, затраченную на деформацию поковки ; г) к.п.д. удара молота о поковку. Удар молота рассматривать как неупругий.

Дано: Решение:

а) Кинетическую энергию молота в момент удара найдем по формуле .

б) Чтобы найти энергию, переданную фундаменту, найдем скорость системы молот – поковка (с наковальней) непосредственно после удара. Запишем закон сохранения импульса, который выполняется при неупругом ударе, в проекции на ось (положительное направление оси совпадает с направлением движения молота) , где скорость поковки (с наковальней) перед ударом, скорость молота и поковки (вместе с наковальней) после удара. Учитывая, что до удара поковка покоилась , находим, что . В результате сопротивления фундамента скорость быстро гасится, а кинетическая энергия, которой обладает система молот – поковка (с наковальней), передается фундаменту. Следовательно, энергия, переданная фундаменту . Поскольку , запишем . . Определить к.п.д.

Эту энергию находим по формуле .

Т.к. молоток служит для забивания гвоздя в стену, то энергию следует считать полезной. Учитывая, что энергия молотка в момент удара , то .

Искомый к.п.д. , т.е. .

Ответ: .

При абсолютно упругом ударе тела после удара полностью восстанавливают свою форму, например, футбольный мяч при ударе о стену или биллиардные шары после столкновения. При этом суммарная кинетическая энергия взаимодействующих тел сохраняется.

Иными словами, кинетическая энергия не переходит во внутреннюю энергию взаимодействующих тел, и их температура не повышается.

Рассмотрим абсолютно упругий удар шарика о массивную стену (рис. 24.1).

Пусть шарик подлетает к стене со скоростью , составляющей угол a с нормалью к стене. Выясним, с какой скоростью он отлетит от стены.

В момент удара о стену на шарик действует только сила нормальной реакции (силы трения быть не может, иначе выделялось ты тепло!). , N y = 0, а значит, в вертикальном направлении тело не может получить ускорение: а у = 0, υ 0у = υ у .

Поскольку при абсолютно упругом ударе общая кинетическая энергия сохраняется, а энергию, полученную стеной, в силу ее массивности можно считать равной нулю, то и υ = υ 0 . Но так как (по теореме Пифагора), то , а так как υ 0у = υ у , то |υ 0х | = |υ х |. Отсюда из равенства треугольников (см. рис. 24.1) следует, что угол отражения шарика b равен углу его падения a: a = b.

Итак, при абсолютно упругом ударе о массивную стену скорость тела не меняется по абсолютной величине , а угол падения равен углу отражения.

Задача 24.1. С высоты Н по гладкой наклонной плоскости длиной l = H/3 и углом наклона a = 30° соскальзывает без трения шарик и затем падает на горизонтальную плоскость, удар о которую следует считать абсолютно упругим (рис. 24.2,а ). На какую высоту h поднимется шарик после удара о плоскость?

Решение . Чтобы найти h , рассмотрим движение шарика после удара о плоскость (рис. 24.2,б ). Шарик движется как тело, брошенное под углом к горизонту, и высота подъема, как уже известно из кинематики, равна , где υ в – вертикальная составляющая начальной скорости .

Найдем с помощью ТКЭ:

.

Чтобы найти горизонтальную составляющую скорости , найдем модуль скорости также с помощью ТКЭ:

.

Из рис. 24.2,б :

υ г = υ 1 cos30° = .

Заметим, что поскольку в горизонтальном направлении после отрыва от наклонной плоскости никакие силы на шарик не действуют, величина υ г далее со временем не меняется и после удара о горизонтальную плоскость остается такой же, как после отрыва от наклонной плоскости.

Теперь найдем вертикальную составляющую скорости : , где , υ г = . Отсюда

Основной закон динамики поступательного движения для замкнутой системы тел: , следовательно: .

Таким образом, импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени . Этот закон справедлив не только в классической механике, но и в квантовой механи­ке для замкнутых систем микрочастиц. Закон сохранения импульса - фундаментальный закон природы.

Закон справедлив и для незамкнутых систем, если геометрическая сумма всех внешних сил равна нулю . Из закона сохранения импульса вытекает, что центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным. В неинерциальных системах отсчета закон сохранения импульса несправедлив.

При соударении двух тел существуют 2 предельных вида удара: абсолютно упругий и абсолютно неупругий.

Абсолютно упругим называется такой удар, при котором механическая энергия тел не переходит в другие, немеханические виды энергии. При таком ударе кинетическая энергия полностью или частично переходит в потенциальную энергию упругой деформации. Затем тела возвращаются к первоначальной форме, отталкивая друг друга. В итоге потенциальная энергия упругой деформации снова переходит в кинетическую энергию и тела разлетаются со скоро­стями, модуль и направления которых определяются двумя условиями: сохранением полной механической энергии и сохранением полного импульса системы тел.

При абсолютно упругом центральном ударе (удар происходит по прямой, соединяющей центры масс шаров) возможны два случая:

  1. Шары двигаются навстречу друг другу.
  2. Один шар догоняет другой (рисунок 22).


Положим, что система замкнутая и вращение шаров отсутствует. Пусть массы шаров m 1 и m 2 , скорости их до удара и , а после удара и соответственно. Скорости шаров после удара определяются при решении системы уравнений, составленной согласно закону сохранения механической энергии и закону сохранения импульса:

- закон сохранения энергии.

Закон сохранения импульса.

Если m 1 = m 2 , то .

Для численных расчетов нужно спроектировать векторы скоростей на ось, вдоль которой движутся шары, т.е. учесть направление скоростей соответствующими знаками .

Из полученных формул можно определить скорость шара после удара о движущуюся или неподвижную стенку:

Абсолютно неупругий удар характеризуется тем, что потенциальной энергии деформа­ции при таком ударе не возникает. Кинетическая энергия тел полностью или частично превращается во внут­реннюю энергию. После удара столкнувшиеся тела либо двигаются с одинаковой скоростью, либо покоятся (рисунок 23).

До удара


При абсолютно неупругом ударе выполняется лишь закон сохранения импульса системы. Закон сохранения механической энергии не выполняется .

Рассмотрим абсолютно неупругий удар 2-х материальных точек, образующих замкнутую систему. Пусть массы материальных точек m 1 и m 2 , а скорости до удара - и , а после удара - . Суммар­ный импульс системы после удара должен быть таким же, как и до удара

Скорость системы тел после удара .

В численных расчетах используютсяпроекции векторов скоростей на направление оси, вдоль которой двигаются тела.

Контрольные вопросы:

1. Изложите закон сохранения импульса.

2. Расскажите об абсолютно упругом ударе.

3. Какие законы сохранения действуют при абсолютно упругом ударе?

4. Как определить скорости двух тел после абсолютно упругого удара?

5. Что такое абсолютно неупругий удар? Какой закон сохранения действует при абсолютно неупругом ударе?

6. Как вычислить скорость тел после абсолютно неупругого удара?

Выберите правильные ответы на поставленные вопросы:

1. При абсолютно упругом ударе двух шаров с начальными импульсами и и кинетическими энергиями Е 1 и Е 2 соответственно, суммарный импульс Р шаров и кинетическая энергия Е сразу после соударения… ○ 1. …Р = р 1 +р 2 , E > E 1 +E 2 . ○ 2. …Р = р 1 +р 2 , E < E 1 +E 2 . ○ 3. …Р ≠ р 1 +р 2 , E = E 1 +E 2 . ○ 4. …Р = р 1 +р 2 , E = E 1 +E 2 . ○ 5. …Р ≠ р 1 +р 2 , E < E 1 +E 2 . 4. Три массивных диска вращаются соосно, как показано на рисунке. Как изменится момент импульса системы после сцепления колес? Трением в оси пренебречь. ○ 1. Увеличится в девять раз. ○ 2. Увеличится в три раза. ○ 3. Не изменится. ○ 4. Уменьшится в три раза. ○ 5. Уменьшится в девять раз.
2. Человек стоит в центре массивного диска, свободно вращающегося вокруг вертикальной оси. Как изменится угловая скорость вращения диска если он разведет руки с гантелями в стороны? ○ 1. Увеличится, так как будет произведена полезная работа. ○ 2. Не изменится согласно закону сохранения импульса. ○ 3. Уменьшится согласно закону сохранения момента импульса. ○ 4. Увеличится, так как возрастет кинетическая энергия. ○ 5. Не изменится согласно закону сохранения энергии. 5. Два шара одинаковой массы m со скоростями и сталкиваются абсолютно неупруго и приобретают скорости и . Какое из утверждений справедливо? ○ 1. V 1 =V 2 =V, причем . ○ 2. V 1 =V 2 =V, причем . ○ 3. V 1 ≠V 2 , причем ○ 4. V 1 ≠V 2 , причем ○ 5. V 1 =V 2 =V, причем .
3. Чему равен импульс и энергия после встречного абсолютно неупругого удара двух тел? ○ 1. E=E 1 +E 2 ○ 2. EE 1 +E 2 ○ 4. E≠E 1 +E 2 ○ 5. E≠E 1 +E 2 6. Одинаковые моменты внешних сил действуют на два шара, которые вращаются на неподвижных осях. Момент инерции первого шара больше, чем второго. Угловое ускорение первого шара… ○ 1. …больше, чем у второго. ○ 2. …меньше, чем у второго. ○ 3. …такое же, как у второго. ○ 4. …может быть больше или меньше, чем у второго в зависимости от соотношения масс шаров. ○ 5. …может быть больше или меньше, чем у второго в зависимости от соотношения радиусов шаров.

Закон всемирного тяготения

Изучением движения планет люди занимались, начиная с глубокой древности. Астроном Иоганн Кеплер обработал результаты многочисленных наблюдений и изложил законы движения планет:

Впоследствии Ньютон на основании законов Кеплера и основных законов динамики от­крыл закон всемирного тяготения: Все тела (материальные точки) независимо от их свойств, притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропор­циональной квадрату расстояния между ними F = G , где:

G - гравитационная постоянная. G = 6,672 10 -11

Сила тяжести

Согласно второму закону Ньютона любое тело вблизи поверхности Земли начинает дви­гаться с ускорением свободного падения под действием силы тяжести .

Для тел, находящихся на поверхности Земли: , где М - масса Земли, m - масса тела, R 3 - радиус Земли. Отсюда:

Если тело массой m находится на высоте h над поверхностью Земли, то . Таким образом, сила тяжести уменьшается с удалением от Земли.

Работа в поле тяготения

Если тело массой перемещать с расстояния от Земли до расстояния (рисунок 24), то работа по его перемещению:

Эта работа не зависит от траектории, а определяется лишь начальным и конечным положением тела. Следо­вательно, силы тяготения - консервативные, а поле тяготения – потенциальное.

Работа, совершаемая консервативными силами:

При R 2 ®¥ ®0.

Потенциальная энергия двух тел, находящихся на расстоянии .

Если тело массой m находится на высоте h над поверхностью Земли, то его потенциальная энергия , где

R 3 - радиус Земли R 3 = 6,4-10 6 м, М - масса Земли. М = 6 × 10 24 кг.

Невесомость

Вес тела – это сила, действующая на опору или на подвес. Состояние тела, при котором оно движется только под действием силы тяжести, называется состоянием невесомости . Если к телу приложена не только сила тяготения , но и другая сила , создающая уско­рение тела , то дополнительная сила должна удовлетворять условию: .

Задачи физики, в которых рассматриваются движущиеся и ударяющиеся друг о друга тела, предполагают для их решения знание законов сохранения импульса и энергии, а также понимание специфики самого взаимодействия. В данной статье дается теоретическая информация об упругом и неупругом ударах. Также приводятся частные случаи решения задач, связанных с данными физическими понятиями.

Количество движения

Перед рассмотрением абсолютно упругого и неупругого удара необходимо дать определение величине, которая известна, как количество движения. Ее принято обозначать латинской буквой p. Вводится в физику она просто: это произведение массы на линейную скорость движения тела, то есть имеет место формула:

Это но для простоты она записана в скалярной форме. В данном понимании количество движения рассматривалось Галилеем и Ньютоном в XVII веке.

Эта величина не выводится. Ее появление в физике связано с интуитивным пониманием наблюдаемых в природе процессов. Например, каждый хорошо представляет, что остановить лошадь, которая бежит со скоростью 40 км/ч, гораздо тяжелее, чем муху, летящую с той же скоростью.

Импульс силы

Количество движения многие называют просто импульсом. Это не совсем верно, поскольку под последним понимают воздействие силы на объект в течение некоторого промежутка времени.

Если сила (F) не зависит от времени ее действия (t), тогда импульс силы (P) в классической механике записывается следующей формулой:

Пользуясь законом Ньютона, перепишем это выражение так:

Здесь a - сообщаемое телу массой m ускорение. Поскольку действующая сила не зависит от времени, то ускорение является постоянной величиной, которая определяется отношением скорости ко времени, то есть:

P = m*a*t = m*v/t*t = m*v.

Мы получили интересный результат: импульс силы равен количеству движения, которое он сообщает телу. Именно поэтому многие физики просто опускают слово "сила" и говорят импульс, имея в виду количество движения.

Записанные формулы также ведут к одному важному выводу: при отсутствии внешних сил любые внутренние взаимодействия в системе сохраняют ее суммарное количество движения (импульс силы равен нулю). Последняя формулировка известна в качестве изолированной системы тел.

Понятие о механическом ударе в физике

Теперь пришло время перейти к рассмотрению абсолютно упругого и неупругого ударов. Под механическим ударом в физике понимают одновременное взаимодействие двух или более твердых тел, в результате которого происходит обмен энергией и количеством движения между ними.

Основными особенностями удара являются большие действующие силы и малые промежутки времени их приложения. Часто удар характеризуют величиной ускорения, выраженной в виде g для Земли. Например, запись 30*g, говорит, что в результате столкновения сила сообщила телу ускорение 30*9,81 = 294,3 м/с 2 .

Частными случаями столкновения являются абсолютный упругий и неупругий удары (последний также называют эластичным или пластичным). Рассмотрим, что они собой представляют.

Идеальные виды ударов

Упругие и неупругие удары тел являются идеализированными случаями. Первый из них (упругий) означает, что при столкновении двух тел не создается никакой остаточной деформации. Когда одно тело сталкивается с другим, то в некоторый момент времени происходит деформация обоих объектов в области их контакта. Эта деформация служит механизмом передачи энергии (количества движения) между объектами. Если она является абсолютно упругой, то после удара никаких потерь энергии не происходит. В этом случае говорят о сохранении кинетической энергии взаимодействующих тел.

Второй вид ударов (пластический или абсолютно неупругий) означает, что после соударения одного тела о другое, они "слипаются" друг с другом, поэтому после удара оба объекта начинают двигаться как единое целое. В результате этого удара некоторая часть кинетической энергии расходуется на деформацию тел, трение, выделение тепла. При этом виде соударения энергия не сохраняется, но количество движения остается неизменным.

Упругий и неупругий удары - это идеальные частные случаи столкновения тел. В реальной жизни характеристики всех столкновений не относятся ни к одному из этих двух видов.

Абсолютно упругое столкновение

Решим две задачи на упругий и неупругий удар шаров. В этом пункте рассмотрим первый вид столкновения. Так как законы энергии и импульса в этом случае соблюдаются, то запишем соответствующую систему из двух уравнений:

m 1 *v 1 2 +m 2 *v 2 2 = m 1 *u 1 2 +m 2 *u 2 2 ;

m 1 *v 1 +m 2 *v 2 = m 1 *u 1 +m 2 *u 2 .

Эта система используется для решения любых задач с любыми начальными условиями. В данном примере ограничимся частным случаем: пусть массы m 1 и m 2 двух шаров равны. Кроме того, начальная скорость второго шара v 2 равна нулю. Необходимо определить результат центрального упругого столкновения рассматриваемых тел.

С учетом условия задачи, перепишем систему:

v 1 2 = u 1 2 + u 2 2 ;

v 1 = u 1 + u 2 .

Подставляем второе выражение в первое, получаем:

(u 1 + u 2) 2 = u 1 2 +u 2 2

Раскрываем скобки:

u 1 2 + u 2 2 + 2*u 1 *u 2 = u 1 2 + u 2 2 => u 1 *u 2 = 0

Последнее равенство справедливо, если одна из скоростей u 1 или u 2 равна нулю. Вторая из них не может быть нулевой, поскольку при попадании первого шара во второй, он неминуемо начнет двигаться. Это означает, что u 1 = 0, а u 2 > 0.

Таким образом при упругом столкновении движущегося шара с покоящимся, массы которых одинаковы, первый передает свой импульс и энергию второму.

Неупругий удар

В этом случае шар, который катится, при столкновении со вторым шаром, который покоится, прилипает к нему. Дальше оба тела начинают движение, как одно целое. Поскольку импульс упругих и неупругих ударов сохраняется, то можно записать уравнение:

m 1 *v 1 + m 2 *v 2 = (m 1 + m 2)*u

Поскольку в нашей задаче v 2 =0, то конечная скорость системы из двух шаров определиться следующим выражением:

u = m 1 *v 1 / (m 1 + m 2)

В случае равенства масс тел, получаем еще более простое выражение:

Скорость двух слипшихся шаров будет в два раза меньше, чем эта величина для одного шара до момента столкновения.

Коэффициент восстановления

Эта величина является характеристикой энергетических потерь во время столкновения. То есть она описывает, насколько упругим (пластичным) является рассматриваемый удар. Ее ввел в физику Исаак Ньютон.

Получить выражение для коэффициента восстановления не представляет никакого труда. Положим, что столкнулись два тела массами m 1 и m 2 . Пусть их начальные скорости были равны v 1 и v 2 , а конечные (после столкновения) - u 1 и u 2 . Полагая, что удар упругий (сохраняется кинетическая энергия), запишем два уравнения:

m 1 *v 1 2 + m 2 *v 2 2 = m 1 *u 1 2 + m 2 *u 2 2 ;

m 1 *v 1 + m 2 *v 2 = m 1 *u 1 + m 2 *u 2 .

Первое выражение - это закон сохранения энергии кинетической, второе - сохранение количества движения.

После ряда упрощений можно получить формулу:

v 1 + u 1 = v 2 + u 2 .

Ее в виде отношения разности скоростей можно переписать следующим образом:

1 = -1*(v 1 -v 2) / (u 1 -u 2).

Таким образом, взятое с обратным знаком отношение разности скоростей двух тел до столкновения к аналогичной разности для них после столкновения равно единице, если имеет место абсолютно упругий удар.

Можно показать, что последняя формула для неупругого удара даст значение 0. Поскольку законы сохранения при упругом и неупругом ударе для кинетической энергии разные (она сохраняется только при упругом столкновении), то полученная формула - удобный коэффициент для характеристики вида удара.

Коэффициент восстановления K имеет вид:

K = -1*(v 1 -v 2) / (u 1 -u 2).

Расчет коэффициента восстановления для "прыгающего" тела

В зависимости от характера удара, коэффициент K может существенно отличаться. Рассмотрим, как можно его рассчитать, для случая "прыгающего" тела, например, футбольного мяча.

Сначала мяч держат на некоторой высоте h 0 над поверхностью земли. Затем его отпускают. Он падает на поверхность, отскакивает от нее и поднимается на некоторую высоту h, которую фиксируют. Поскольку скорость поверхности земли до и после ее соударения с мячом была равна нулю, то формула для коэффициента будет иметь вид:

Здесь v 2 =0 и u 2 =0. Знак минус исчез, потому что скорости v 1 и u 1 направлены противоположно. Поскольку падение и подъем мяча является движением равноускоренным и равнозамедленным, то для него справедлива формула:

Выражая скорость, подставляя значения начальной высоты и после отскока мяча в формулу для коэффициента K, получим конечное выражение: K = √(h/h 0).

Важным примером применения законов сохранения импульса и энергии является задача о соударении (столкновении, ударе) тел.

Такое соударение двух (или более) тел происходит за счет взаимодействия, которое обычно длится очень короткое время. Например, при соударении бильярдных шаров взаимодействие обеспечивается силами деформации шаров при соприкосновении. А соударение электронов и ионов в электрическом разряде происходит за счет кулоновского взаимодействия, которое велико лишь в мгновения наибольшего сближения частиц. Силы взаимодействия между сталкивающимися телами из-за малого времени процесса столь велики, что внешними силами в момент столкновения можно пренебречь. Поэтому систему тел при ударе можно рассматривать как замкнутую и применять к ней закон сохранения импульса.

Если суммарная кинетическая энергия тел после соударения равна их энергии до соударения (кинетическая энергия сохраняется), то соударение называют упругим. Если в процессе соударения происходит уменьшение суммарной кинетической энергии сталкивающихся тел, то соударение неупругое. Абсолютно неупругим соударением называют столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина. Л, например, процесс ионизации молекулы быстрым электроном удобно рассматривать как упругое соударение с передачей от быстрого электрона электрону молекулы энергии, превышающей потенциал ионизации.

Центральным {лобовым ) соударением называют соударение, при котором тела до удара движутся вдоль прямой, проходящей через их центры масс. В противном случае соударение нецентральное {боковое).

Рассмотрим центральное упругое соударение быстрой частицы с неподвижной. Из соображений симметрии после центрального удара частицы по-прежнему могут двигаться только вдоль той же прямой, проходящей через их центры масс, так что задача сводится к одномерной. В этом случае справедливы скалярные законы сохранения импульса и кинетической энергии:

Здесь М - масса, a v - скорость быстрой (первой) частицы до соударения; v t - скорость быстрой частицы после соударения; т - масса, аг; 2 - скорость второй частицы после соударения.

Поделив почленно формулу закона сохранения энергии на формулу закона сохранения импульса так, чтобы сократились массы (для этого члены с М надо перенести в левую часть системы), получим

Подставив скорость первой частицы после соударения в формулу (3.27), получим

Важным параметром для электроники и новых технологий является доля энергии теряемая быстрой частицей в столкновении. Она находится как отношение потери энергии АЕ первой частицей к первоначальной энергии Е. Очевидно, что при упругом столкновении потеря энергии первой частицы равна энергии E v приобретенной второй частицей:

Отсюда имеем

Рассмотрим случаи наиболее важных соотношений масс (одинаковых, различных, существенно различных). При этом разными получаются направления скоростей и доля переданной энергии.

Результат математически подтверждает наблюдение, что наиболее эффективный обмен энергией при упругих соударениях возможен между частицами со сравнимой массой. В частности, при центральном соударении частиц с одинаковой массой = т) из формулы (3.31) имеем ^ = 1, что означает полную передачу энергии от налетающей частицы к неподвижной и полную остановку первой частицы в результате удара.

Если же массы соударяющихся частиц существенно различны, то в знаменателе формулы (3.31) можно пренебречь легкой массой по сравнению с тяжелой. Так, если быстрая частица более массивная (М т), то имеем

Если быстрая частица менее массивная (М т), получим

Результат в двух последних случаях показывает, что при центральном столкновении частиц с существенно различной массой доля передаваемой энергии невелика. Это справедливо независимо от того, какая частица тяжелее - быстрая или неподвижная. Частным случаем формулы (3.33) является, например, столкновение шара со стеной.

Полученные зависимости играют большую роль в электронике. Так, из формулы (3.33) следует, что ускоренный электрон при столкновении с атомами и ионами может передать им лишь порядка тысячной доли энергии и менее. Легкие электроны быстро ускоряются в электрическом поле, но медленно передают свою энергию окружающим тяжелым частицам. В результате в разрядных и других электронных приборах часто температура электронов оказывается во много раз выше температуры атомов. Так, в газоразрядных осветительных лампах температура атомов и колбы составляет сотни кельвинов, а температура электронов разряда - тысячи кельвинов. Это позволяет горячим электронам эффективно возбуждать (с последующим свечением) атомы. Здесь и в других приборах отрыв температур способствует их высокой полезной мощности и экономичности.

А, например, в соответствии с формулой (3.32) ускоренные атомы и ионы способны отдавать лишь малую часть своей энергии на ионизацию и возбуждение молекул среды, обычно происходящие за счет передачи энергии электронам атомов и ионов.

Знание относительной потери энергии позволяет оценить число упругих центральных столкновенийQ, требуемых для практически полного торможения быстрой частицы:

где т т и т л - соответственно массы тяжелой и легкой сталкивающихся частиц. Так, даже для соударений быстрых электронов с ядрами атомов водорода - протонами Q « 1000. Однако число необходимых для торможения соударений может заметно превышать даже эту большую величину. Далеко не все соударения частиц центральные. Обычно частицы при столкновении лишь слегка задевают одна другую, так что передача энергии при этом меньше, чем при центральном ударе. Такие боковые удары играют большую роль в теории столкновений. Учет их требует введения понятия сечения столкновения.

Несложно понять из формул, каким становится направление движения тел после столкновения. Опыт игры в бильярд подсказывает, что движущийся шар остановится уже при первом упругом центральном столкновении с другим точно таким же, но неподвижным шаром (рис. 3.5, а). А легкий шар при упругом соударении просто отскакивает от тяжелого и изменяет направление своего движения (и векторную характеристику движения - импульс), почти не меняя своей энергии (рис. 3.5, б). Наоборот, тяжелый шар, придавая скорость легкому, сохраняет направление своего движения (рис. 3.5, в).

Рис. 35

Рассмотрим теперь центральный абсолютно неупругий удар, когда тело массой М и со скоростью V сталкивается с неподвижным телом массы т. Закон сохранения импульса в этом случае имеет вид

где v - скорость тел после соударения. Тогда

Последняя формула позволяет получить ряд достаточно очевидных выводов. При неупругом ударе тяжелого тела по легкому в тепловые потери идет малая доля кинетической энергии. Если легкое тело бьет по тяжелому, то почти вся энергия уходит в тепло. Если массы тел сравнимы, то конечная кинетическая энергия системы сравнима с тепловыми потерями.

Если соударение является нецентральным (боковым), то в общем случае необходимо учитывать векторный характер закона сохранения импульса, который распадается на три уравнения по координатам. Впрочем, для важного случая столкновения одинаковых по массе частиц можно получить интересный результат без координатного рассмотрения. По аналогии с формулами (3.27) и (3.28) имеем


Выразив начальную скорость быстрой частицы из формулы (3.37) и подставив сс в формулу (3.38), получим

В данной ситуации скалярное произведение обращается в нуль в двух случаях. Во-первых, если конечная скорость быстрой частицы равна нулю - этот случай центрального удара мы рассматривали выше. А во-вторых, для бокового удара остается случай, когда угол между конечными скоростями частиц является прямым. Таким образом, после бокового удара налетающей частицы по неподвижной частице той же массы частицы разлетаются под прямым углом. Этот вывод существенно упрощает рассмотрение ионизации и возбуждения атомов электронным ударом.