Как найти параметр параболы формула. Квадратичная функция. Угол между двумя прямыми

Точка называется фокусом параболы, прямая - директрисой параболы, середина перпендикуляра, опущенного из фокуса на директрису, - вершиной параболы, расстояние от фокуса до директрисы - параметром параболы, а расстояние от вершины параболы до ее фокуса - фокусным расстоянием (рис.3.45,а). Прямая, перпендикулярная директрисе и проходящая через фокус, называется осью параболы (фокальной осью параболы). Отрезок , соединяющий произвольную точку параболы с ее фокусом, называется фокальным радиусом точки . Отрезок, соединяющий две точки параболы, называется хордой параболы.

Для произвольной точки параболы отношение расстояния до фокуса к расстоянию до директрисы равно единице. Сравнивая директориальные свойства эллипса, гиперболы и параболы, заключаем, что эксцентриситет параболы по определению равен единице .

Геометрическое определение параболы, выражающее ее директориальное свойство, эквивалентно ее аналитическому определению - линии, задаваемой каноническим уравнением параболы:

(3.51)

Действительно, введем прямоугольную систему координат (рис.3.45,6). Вершину параболы примем за начало системы координат; прямую, проходящую через фокус перпендикулярно директрисе, примем за ось абсцисс (положительное направление на ней от точки к точке ); прямую, перпендикулярную оси абсцисс и проходящую через вершину параболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат оказалась правой).

Составим уравнение параболы, используя ее геометрическое определение, выражающее директориальное свойство параболы. В выбранной системе координат определяем координаты фокуса и уравнение директрисы . Для произвольной точки , принадлежащей параболе, имеем:

где - ортогональная проекция точки на директрису. Записываем это уравнение в координатной форме:

Возводим обе части уравнения в квадрат: . Приводя подобные члены, получаем каноническое уравнение параболы

т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.51), и только они, принадлежат геометрическому месту точек, называемому параболой. Таким образом, аналитическое определение параболы эквивалентно его геометрическому определению, выражающему директориальное свойство параболы.

Приведем следующие свойства параболы:

Свойство 10.10.

Парабола имеет ось симметрии.

Доказательство

Переменная y входит в уравнение только во второй степени. Поэтому, если координаты точки M (x ; y) удовлетворяют уравнению параболы, то и координаты точки N (x ; – y) будут ему удовлетворять. Точка N симметрична точке M относительно оси Ox . Следовательно, ось Ox является осью симметрии параболы в канонической системе координат.

Ось симметрии называется осью параболы. Точка пересечения параболы с осью называется вершиной параболы. Вершина параболы в канонической системе координат находится в начале координат.

Свойство 10.11.

Парабола расположена в полуплоскости x ≥ 0.

Доказательство

Действительно, так как параметр p положителен, то уравнению могут удовлетворять только точки с неотрицательными абциссами, то есть точки полуплоскости x ≥ 0.

При замене системы координат заданная в условии точка A с координатами будет иметь новые координаты, определяемые из соотношенийТаким образом, точка A будет иметь в канонической системе координатыДанную точкуназывают фокусом параболы и обозначают буквой F .

Прямая l , задаваемая в старой системе координат уравнением в новой системе координат будет иметь видили, опуская штриховку,

Данная прямая в канонической системе координат называется директрисой параболы. Расстояние от нее до фокуса называется фокальным параметромпараболы. Очевидно, он равен p . Эксцентриситет параболы по определению полагают равным единице, то есть ε = k = 1.

Теперь свойство, через которое мы определили параболу, в новых терминах можно сформулировать следующим образом: любая точка параболы равноудалена от ее фокуса и директрисы.

Вид параболы в канонической системе координат и расположение ее директрисы приведены на рис. 10.10.1.

Рисунок 10.10.1.

Над полем P, есть линейный оператор, если 1) для любых векторов2)для любого вектораи любого.

1) Матрица линейного оператора: Пусть φ-Л.О. векторного пространства V над полем P и один из базисов V: ПустьТогда матрица Л.О.φ:2) Связь между матрицами линейного оператора в разных базисах: M(φ) - матрица Л.О. φ в старом базисе. M1(φ) - матрица Л.О. φ в новом базисе. Т - матрица перехода от старшего базиса к новому базису.2)Действия над линейными операторами: Пусть φ и f - различные Л.О. векторного пространства V. Тогда φ+f - сумма линейных операторов φ и f. k·φ - умножение Л.О. на скаляр k. φ·f - произведение линейных операторов φ и f. Являюися также Л.О. вектороного пространства V.

4) Ядро линейного оператора: d(φ) - размерность ядра Л.О. φ (дефект).5) Образ линейного оператора: ranφ - ранг Л.О. φ (размерность Jmφ).6) Собсвенные векторы и собственные значения линейного вектора:

 Пусть φ - Л.О. векторного пространства V над полем P и иЕслито λ - собственное значение- собственный вектор Л.О. φ, отвечающий λ.

 Характеристическое уравнение Л.О. φ:

 Множество собственных векторов, отвечающих собственному значению λ:

 Л.О. вектороного пространства называются Л.О. с простым спектром, если φ, если φ имеет ровно n собственных значений.

 Если φ - Л.О. с простым спектром, то он имеет базис из собственных векторов, относительно которого матрица Л.О. φ диагональна.

2) Положение прямой в пространстве вполне определяется заданием какой-либо её фиксированной точки М 1 и вектора , параллельного этой прямой.

Вектор , параллельный прямой, называетсянаправляющим вектором этой прямой.

Итак, пусть прямая l проходит через точку М 1 (x 1 , y 1 , z 1 ), лежащую на прямой параллельно вектору .

Рассмотрим произвольную точку М(x,y,z) на прямой. Из рисунка видно, что .

Векторы иколлинеарны, поэтому найдётся такое числоt , что , где множительt может принимать любое числовое значение в зависимости от положения точки M на прямой. Множитель t называется параметром. Обозначив радиус-векторы точек М 1 и М соответственно через и, получаем. Это уравнение называетсявекторным уравнением прямой. Оно показывает, что каждому значению параметра t соответствует радиус-вектор некоторой точки М , лежащей на прямой.

Запишем это уравнение в координатной форме. Заметим, что ,иотсюда

Полученные уравнения называются параметрическими уравнениями прямой.

При изменении параметра t изменяются координаты x , y и z и точка М перемещается по прямой.

КАНОНИЧЕСКИЕ УРАВНЕНИЯ ПРЯМОЙ

Пусть М 1 (x 1 , y 1 , z 1 ) – точка, лежащая на прямой l , и – её направляющий вектор. Вновь возьмём на прямой произвольную точкуМ(x,y,z) и рассмотрим вектор .

Ясно, что векторы иколлинеарные, поэтому их соответствующие координаты должны быть пропорциональны, следовательно,

канонические уравнения прямой.

Замечание 1. Заметим, что канонические уравнения прямой можно было получить из параметрических,исключив параметрt . Действительно, из параметрических уравнений получаем или.

Пример. Записать уравнение прямой в параметрическом виде.

Обозначим , отсюдаx = 2 + 3t , y = –1 + 2t , z = 1 –t .

Замечание 2. Пусть прямая перпендикулярна одной из координатных осей, например оси Ox . Тогда направляющий вектор прямой перпендикуляренOx , следовательно, m =0. Следовательно, параметрические уравнения прямой примут вид

Исключая из уравнений параметр t , получим уравнения прямой в виде

Однако и в этом случае условимся формально записывать канонические уравнения прямой в виде. Таким образом, еслив знаменателе одной из дробей стоит нуль, то это означает, что прямая перпендикулярна соответствующей координатной оси.

Аналогично, каноническим уравнениям соответствует прямая перпендикулярная осямOx и Oy или параллельная оси Oz .

Примеры.

Канонические уравнения: .

Параметрические уравнения:

    Составить уравнения прямой, проходящей через две точки М 1 (-2;1;3), М 2 (-1;3;0).

Составим канонические уравнения прямой. Для этого найдем направляющий вектор . Тогдаl :.

ОБЩИЕ УРАВНЕНИЯ ПРЯМОЙ, КАК ЛИНИИ ПЕРЕСЕЧЕНИЯ ДВУХ ПЛОСКОСТЕЙ

Через каждую прямую в пространстве проходит бесчисленное множество плоскостей. Любые две из них, пересекаясь, определяют ее в пространстве. Следовательно, уравнения любых двух таких плоскостей, рассматриваемые совместно представляют собой уравнения этой прямой.

Вообще любые две не параллельные плоскости, заданные общими уравнениями

определяют прямую их пересечения. Эти уравнения называются общими уравнениями прямой.

Примеры.

Построить прямую, заданную уравнениями

Для построения прямой достаточно найти любые две ее точки. Проще всего выбрать точки пересечения прямой с координатными плоскостями. Например, точку пересечения с плоскостью xOy получим из уравнений прямой, полагаяz = 0:

Решив эту систему, найдем точку M 1 (1;2;0).

Аналогично, полагая y = 0, получим точку пересечения прямой с плоскостьюxOz :

От общих уравнений прямой можно перейтик её каноническим или параметрическим уравнениям. Для этого нужно найти какую-либо точку М 1 на прямой и направляющий вектор прямой.

Координаты точки М 1 получим из данной системы уравнений, придав одной из координат произвольное значение. Для отыскания направляющего вектора, заметим, что этот вектор должен быть перпендикулярен к обоим нормальным векторам и. Поэтому за направляющий векторпрямойl можно взять векторное произведение нормальных векторов:

.

Пример. Привести общие уравнения прямой к каноническому виду.

Найдём точку, лежащую на прямой. Для этого выберем произвольно одну из координат, например, y = 0 и решим систему уравнений:

Нормальные векторы плоскостей, определяющих прямую имеют координаты Поэтому направляющий вектор прямой будет

. Следовательно, l : .

1) Пусть и - два базиса в R n .

Определение. Матрицей перехода от базиса к базису называется матрица C, столбцами которой являются координаты векторов в базисе :

Матрица перехода обратима, поскольку векторы базиса линейно независимы и, следовательно,

Вектор линейно выражается через векторы обоих базисов. Связь координат вектора в разных базисах установлена в следующей теореме.

Теорема. Если

то координаты вектора в базисе , и его координаты в базисе связаны соотношениями

где - матрица перехода от базиса к базису , - векторы-столбцы координат вектора в базисах и соответственно.

2)Взаимное расположение двух прямых

Если прямые заданы уравнениями ито они:

1) параллельны (но не совпадают)

2) совпадают

3) пересекаются

4) скрещиваются

Если то случаи 1 - 4 имеют место, когда (- знак отрицания условия):

3)

4)

Расстояние между двумя параллельными прямыми

В координатах

Расстояние между двумя скрещивающимися прямыми

В координатах

Угол между двумя прямыми

Необходимое и достаточное условие перпендикулярности двух прямых

Или

Взаимное расположение прямой и плоскости

Плоскость и прямая

1) пересекаются

2) прямая лежит в плоскости

3) параллельны

Если то случаи 1 - 3 имеют место, когда:

1)

Необходимое и достаточное условие параллельности прямой и плоскости

Угол между прямой и плоскостью

Точка пересечения прямой с плоскостью

В координатах:

Уравнения прямой, проходящей через точку перпендикулярно к плоскости

В координатах:

1) Очевидно, что система линейных уранвений может быть записана в виде:

x 1 + x 2 + … + x n

Доказательство.

1) Если решение существует, то столбец свободных членов есть линейная комбинация столбцов матрицы А, а значит добавление этого столбца в матрицу, т.е. переход АА * не изменяют ранга.

2) Если RgA = RgA * , то это означает, что они имеют один и тот жебазисный минор. Столбец свободных членов – линейная комбинация столбцов базисного минора, те верна запись, приведенная выше.

2) Плоскость в пространстве.

Получим сначала уравнение плоскости, проходящей через точку М 0 0 0 , z 0 ) перпендикулярно вектору n = {A , B , C },называемому нормалью к плоскости. Для любой точки плоскости М(х, у, z ) вектор М 0 М = {x - x 0 , y - y 0 , z - z 0 ) ортогонален вектору n , следовательно, их скалярное произведение равно нулю:

A (x - x 0 ) + B (y - y 0 ) + C (z - z 0 ) = 0. (8.1)

Получено уравнение, которому удовлетворяет любая точка заданной плоскости – уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.

После приведения подобных можно записать уравнение (8.1) в виде:

Ax + By + Cz + D = 0, (8.2)

где D = -Ax 0 - By 0 - Cz 0 . Это линейное уравнение относительно трех переменных называют общим уравнением плоскости .

Неполные уравнения плоскости.

Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным.

Рассмотрим возможные виды неполных уравнений:

1) D = 0 – плоскость Ax + By + Cz = 0 проходит через начало координат.

2) А = 0 – n = {0,B , C }Ox , следовательно, плоскость By + Cz + D = 0 параллельна оси Ох .

3) В = 0 – плоскость Ax + Cz + D = 0 параллельна оси Оу .

4) С = 0 – плоскость Ax + By + D = 0 параллельна оси О z .

5) А = В = 0 – плоскость Cz + D Оху (так как она параллельна осям Ох и Оу ).

6) А = С = 0 – плоскость Ву + D = 0 параллельна координатной плоскости Ох z .

7) B = C = 0 – плоскость Ax + D = 0 параллельна координатной плоскости Оу z .

8) А = D = 0 – плоскость By + Cz = 0 проходит через ось Ох .

9) B = D = 0 – плоскость Ах + С z = 0 проходит через ось Оу .

10) C = D = 0 - плоскость Ax + By = 0 проходит через ось Oz .

11) A = B = D = 0 – уравнение С z = 0 задает координатную плоскость Оху.

12) A = C = D = 0 – получаем Ву = 0 – уравнение координатной плоскости Ох z .

13) B = C = D = 0 – плоскость Ах = 0 является координатной плоскостью Оу z .

Если же общее уравнение плоскости является полным (то есть ни один из коэффициентов не равен нулю), его можно привести к виду:

называемому уравнением плоскости в отрезках . Способ преобразования показан в лекции 7. Параметры а, b и с равны величинам отрезков, отсекаемых плоскостью на координатных осях.

1) Однородные системы линейных уравнений

Однородная система линейных уравнений AX = 0 всегда совместна. Она имеет нетривиальные (ненулевые) решения, если r = rankA < n .

Для однородных систем базисные переменные (коэффициенты при которых образуют базисный минор) выражаются через свободные переменные соотношениями вида:

Тогда n - r линейно независимыми вектор-решениями будут:

а любое другое решение является их линейной комбинацией. Вектор-решения образуют нормированную фундаментальную систему.

В линейном пространстве множество решений однородной системы линейных уравнений образует подпространство размерностиn - r ; - базис этого подпространства.

Рассмотрим на плоскости прямую и точку, не лежащую на этой прямой. И эллипс , и гипербола могут быть определены единым образом как геометрическое место точек, для которых отношение расстояния до данной точки к расстоянию до данной прямой есть постоянная вели-

чина ε. При 0 1 - гипербола. Параметр ε является эксцентриситетом как эллипса, так и гиперболы . Из возможных положительных значений параметра ε одно, а именно ε = 1, оказывается незадействованным. Этому значению соответствует геометрическое место точек, равноудаленных от данной точки и от данной прямой.

Определение 8.1. Геометрическое место точек плоскости, равноудаленных от фиксированной точки и от фиксированной прямой, называют параболой.

Фиксированную точку называют фокусом параболы , а прямую - директрисой параболы . При этом полагают, что эксцентриситет параболы равен единице.

Из геометрических соображений вытекает, что парабола симметрична относительно прямой, перпендикулярной директрисе и проходящей через фокус параболы. Эту прямую называют осью симметрии параболы или просто осью параболы . Парабола пересекается со своей осью симметрии в единственной точке. Эту точку называют вершиной параболы . Она расположена в середине отрезка, соединяющего фокус параболы с точкой пересечения ее оси с директрисой (рис. 8.3).

Уравнение параболы. Для вывода уравнения параболы выберем на плоскости начало координат в вершине параболы, в качестве оси абсцисс - ось параболы, положительное направление на которой задается положением фокуса (см. рис. 8.3). Эту систему координат называют канонической для рассматриваемой параболы, а соответствующие переменные - каноническими .

Обозначим расстояние от фокуса до директрисы через p. Его называют фокальным параметром параболы .

Тогда фокус имеет координаты F(p/2; 0), а директриса d описывается уравнением x = - p/2. Геометрическое место точек M(x; y), равноудаленных от точки F и от прямой d, задается уравнением

Возведем уравнение (8.2) в квадрат и приведем подобные. Получим уравнение

которое называют каноническим уравнением параболы .

Отметим, что возведение в квадрат в данном случае - эквивалентное преобразование урав-нения (8.2), так как обе части уравнения неотрицательны, как и выражение под радикалом.

Вид параболы. Если параболу у 2 = x, вид которой считаем известным, сжать с коэффициентом 1/(2р) вдоль оси абсцисс, то получится парабола общего вида, которая описывается уравнением (8.3).

Пример 8.2. Найдем координаты фокуса и уравнение директрисы параболы, если она проходит через точку, канонические координаты которой (25; 10).

В канонических координатах уравнение параболы имеет вид у 2 = 2px. Поскольку точка (25; 10) находится на параболе, то 100 = 50p и поэтому p = 2. Следовательно, у 2 = 4x является каноническим уравнением параболы, x = - 1 - уравнением ее директрисы, а фокус находится в точке (1; 0).

Оптическое свойство параболы. Парабола имеет следующее оптическое свойство . Если в фокус параболы поместить источник света, то все световые лучи после отражения от параболы будут параллельны оси параболы (рис. 8.4). Оптическое свойство означает, что в любой точке M параболы нормальный вектор касательной составляет с фокальным радиусом MF и осью абсцисс одинаковые углы.

Парабола - это бесконечная кривая, которая состоит из точек, равноудаленых от заданной прямой, называемой директрисой параболы, и заданной точки - фокуса параболы. Парабола является коническим сечением, то есть представляет собой пересечение плоскости и кругового конуса.

В общем виде математическое уравнение параболы имеет вид: y=ax^2+bx+c, где a не равно нулю, b отражает смещение графика функции по горизонтали относительно начала координат, а c - вертикальное смещение графика функции относительно начала координат. При этом, если a>0, то при построении графика будут направленны вверх, а в случае, если aСвойства параболы

Парабола - это кривая второго порядка, которая имеет ось симметрии, проходящую через фокус параболы и перпендикулярную директрисе параболы.

Парабола обладает особым оптическим свойством, заключающемся в фокусировки параллельных относительно оси ее симметрии световых лучей, направленных в параболу, в вершине параболы и расфокусировки пучка света, направленного в вершину параболы, в параллельные световые лучи относительной той же оси.

Если произвести отражение параболы относительно любой касательной, то образ параболы окажется на ее директрисе. Все параболы подобны между собой, то есть для каждых двух точек A и B одной параболы, найдутся точки A1 и B1, для которых верно утверждение |A1,B1| = |A,B|*k, где k – коэффициент подобия, который в численном значении всегда больше нуля.

Проявление параболы в жизни

Некоторые космические тела, такие как кометы или астероиды, проходящие вблизи крупных космических объектов на высокой скорости имеют траекторию движения в форме параболы. Это свойство малых космических тел используется при гравитационных маневрах космических кораблей.

Для тренировок будущих космонавтов, на земле проводятся специальные полеты самолетов по траектории параболы, чем достигается эффект невесомости в гравитационном поле земли.

В быту параболы можно встретить в различных осветительных приборах. Это связано с оптическим свойством параболы. Одним из последних способов применения параболы, основанных на ее свойствах фокусировки и расфокусировки световых лучей, стали солнечные батареи, которые все больше входят в сферу энергоснабжения в южных регионах России.

III уровень

3.1. Гипербола касается прямых 5x – 6y – 16 = 0, 13x – 10y – – 48 = 0. Запишите уравнение гиперболы при условии, что ее оси совпадают с осями координат.

3.2. Составьте уравнения касательных к гиперболе

1) проходящих через точку A (4, 1), B (5, 2) и C (5, 6);

2) параллельных прямой 10x – 3y + 9 = 0;

3) перпендикулярных прямой 10x – 3y + 9 = 0.

Параболой называется геометрическое место точек плоскости, координаты которых удовлетворяют уравнению

Параметры параболы:

Точка F (p /2, 0) называется фокусом параболы, величина p параметром , точка О (0, 0) – вершиной . При этом прямая OF , относительно которой парабола симметрична, задает ось этой кривой.


Величина где M (x , y ) – произвольная точка параболы, называется фокальным радиусом , прямая D : x = –p /2 – директрисой (она не пересекает внутреннюю область параболы). Величина называется эксцентриситетом параболы.

Основное характеристическое свойство параболы : все точки параболы равноудалены от директрисы и фокуса (рис. 24).

Существуют иные формы канонического уравнения параболы, которые определяют другие направления ее ветвей в системе координат (рис. 25).:


Для параметрического задания параболы в качестве параметра t может быть взята величина ординаты точки параболы:

где t – произвольное действительное число.

Пример 1. Определить параметры и форму параболы по ее каноническому уравнению:

Решение. 1. Уравнение y 2 = –8x определяет параболу с вершиной в точке О Оx . Ее ветви направлены влево. Сравнивая данное уравнение с уравнением y 2 = –2px , находим: 2p = 8, p = 4, p /2 = 2. Следовательно, фокус находится в точке F (–2; 0), уравнение директрисы D : x = 2 (рис. 26).


2. Уравнение x 2 = –4y задает параболу с вершиной в точке O (0; 0), симметричную относительно оси Oy . Ее ветви направлены вниз. Сравнивая данное уравнение с уравнением x 2 = –2py , находим: 2p = 4, p = 2, p /2 = 1. Следовательно, фокус находится в точке F (0; –1), уравнение директрисы D : y = 1 (рис. 27).


Пример 2. Определить параметры и вид кривой x 2 + 8x – 16y – 32 = 0. Сделать чертеж.

Решение. Преобразуем левую часть уравнения, используя метод выделения полного квадрата:

x 2 + 8x – 16y – 32 =0;

(x + 4) 2 – 16 – 16y – 32 =0;

(x + 4) 2 – 16y – 48 =0;

(x + 4) 2 – 16(y + 3).

В результате получим

(x + 4) 2 = 16(y + 3).

Это каноническое уравнение параболы с вершиной в точке (–4; –3), параметром p = 8, ветвями, направленными вверх (), осью x = –4. Фокус находится в точке F (–4; –3 + p /2), т. е. F (–4; 1) Директриса D задается уравнением y = –3 – p /2 или y = –7 (рис. 28).




Пример 4. Составить уравнение параболы с вершиной в точке V (3; –2) и фокусом в точке F (1; –2).

Решение. Вершина и фокус данной параболы лежат на прямой, параллельной оси Ox (одинаковые ординаты), ветви параболы направлены влево (абсцисса фокуса меньше абсциссы вершины), расстояние от фокуса до вершины равно p /2 = 3 – 1 = 2, p = 4. Значит, искомое уравнение

(y + 2) 2 = –2 · 4(x – 3) или (y + 2) 2 = = –8(x – 3).

Задания для самостоятельного решения

I уровень

1.1. Определите параметры параболы и построить ее:

1) y 2 = 2x ; 2) y 2 = –3x ;

3) x 2 = 6y ; 4) x 2 = –y .

1.2. Напишите уравнение параболы с вершиной в начале координат, если известно, что:

1) парабола расположена в левой полуплоскости симметрично относительно оси Ox и p = 4;

2) парабола расположена симметрично относительно оси Oy и проходит через точку M (4; –2).

3) директриса задана уравнением 3y + 4 = 0.

1.3. Составьте уравнение кривой, все точки которой равноудалены от точки (2; 0) и прямой x = –2.

II уровень

2.1. Определить тип и параметры кривой.

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

y 2 = 2 * p * x,

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x 2 + b x + c (узнаваемый шаблон: y = x 2).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

  • x 0 = -b / (2 * a);
  • y 0 = y (x 0).

Пример.

Имеется функция у = 4 * x 2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2;
  • y = 4 * 4 - 16 * 2 - 25 = 16 - 32 - 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x 2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

D = (b 2 — 4 * a * c).

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х 1, 2 = (-b ± D 0,5) / (2 * a);
  • D = 0, то х 1, 2 = -b / (2 * a);
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей;
  • найти координаты вершины;
  • найти пересечение с осью ординат;
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х 2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2) 2 - 5 * (5/2) + 4 = -15/4;
  3. с осью ординат пересекается в значении у = 4;
  4. найдем дискриминант: D = 25 - 16 = 9;
  5. ищем корни:
  • Х 1 = (5 + 3) / 2 = 4; (4, 0);
  • Х 2 = (5 - 3) / 2 = 1; (1, 0).

Пример 2.

Для функции у = 3 * х 2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3) 2 - 2 * (1/3) - 1 = -4/3;
  3. с осью у будет пересекаться в значении у = -1;
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х 1 = (2 + 4) / 6 = 1; (1;0);
  • Х 2 = (2 - 4) / 6 = -1/3; (-1/3; 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.